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Sepsis is a fatal whole-body inflammation caused by severe infection. Every year, about a 

quarter of a million Americans are stricken with severe sepsis, and up to 50 percent of them die 

as a direct result. Factors such as increased life expectancy, antibiotic resistance, and broader use 

of immunosuppressive agents have caused the number of cases to continue to rise by eight 

percent per year. Therefore, timely recognition of sepsis is crucial to the initiation of evidence-

based therapeutic measures that can prevent the eventual breakdown of organ systems, shock, 

and resultant death.  

The aim of this study is to examine the impact of a cloud-based clinical decision support 

(CDS) alerting system for systemic inflammatory response syndrome (SIRS), a precursor to 

sepsis, and sepsis itself, on adult patient and process outcomes at Virginia Commonwealth 

University (VCU) Health System. The two main hypotheses are: 1) the implementation of cloud-
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based SIRS and sepsis alerts will lead to lower sepsis-related mortality and lower average length 

of stay, and 2) the implementation of cloud-based SIRS and sepsis alerts will lead to more 

frequent ordering of the Sepsis Initial Resuscitation PowerPlan (order set bundle) and more 

recording of sepsis diagnoses. To measure these outcomes, data were collected from September 

2013 through December 2016 after the implementation of a sepsis cloud-based alerting system 

within the Cerner EMR. A pre-implementation group diagnosed with sepsis within the year 

leading up to the alert intervention consisted of 1,551 unique inpatient visits, and the three-year 

post-implementation sample size was 9,711 visits, for a total cohort of 11,262 visits over the 

course of four years. Logistic regression and multiple linear regression were used to test the 

hypotheses.  

Linking cloud-generated SIRS and sepsis alerts with clinical outcomes fills a unique gap 

in the informatics literature. It does so by measuring the clinical performance of an evidence-

based alerting method for promoting maximally effective prevention and treatment practices to 

combat sepsis-related mortality. Study results showed that, post-alert activation, sepsis-related 

mortality was slightly higher after the implementation of SIRS alerts, but the presence of sepsis 

alerts did not have a significant relationship to mortality. The average length of stay and the total 

number of recorded sepsis diagnoses were higher after the implementation of both SIRS and 

sepsis alerts, while ordering of the Sepsis Initial Resuscitation PowerPlan was lower. There is 

preliminary evidence from this study that more sepsis diagnoses are made as a result of alert 

adoption, suggesting that clinicians can consider the implementation of cloud-based SIRS and 

sepsis alerts in order to capture a higher number of sepsis diagnoses. 

 

 



www.manaraa.com

 

1 
 

 

 

 

Chapter 1: Introduction 

 

Overview 

According to a report issued by the Agency for Healthcare Research and Quality 

(AHRQ), certain healthcare IT applications, including those that provide clinical decision 

support (CDS) to medical providers, lead to better patient outcomes in terms of reduced patient 

length of stay and lower rates of hospital-related mortality (Berner, 2009). As Brokel et al. 

(2011) point out, automated CDS alerts can increase adherence to protocols and bolster 

surveillance and monitoring for disease conditions. Sucher, Moore, Todd, Sailors & McKinley 

(2008) similarly state that CDS alerts offer a method to standardize treatment, test interventions, 

and certify quality of care improvements. 

Sepsis is a common and potentially life-threating complication of infection, with a 

sudden onset and subsequent rapid progression ("Sepsis Fact Sheet", 2017). With 751,000 new 

cases each year, and 215,000 resultant fatalities, timely diagnosis of sepsis is crucial to condition 

management (Guerra, Mayfield, Meyers, Clouatre, & Riccio, 2013). A key driver of inpatient 

mortality is sepsis, and it is the tenth most common cause of death in the U.S. (Guerra et al., 

2013). It is also only one of two infectious conditions listed in the top 15 causes of death 

(Melamed & Sorvillo, 2009). Severe sepsis occurs when sepsis causes organ malfunction, such 

as kidney, lung, liver, or heart failure, and inadequate blood flow to various parts of the body 

(Maggio & Carvahlo, 2017; Wiedemann, 2007). A trend analysis conducted by (Dombrovskiy, 



www.manaraa.com

 

2 
 

Martin, Sunderram, & Paz, 2007) revealed that during the period from 1993 to 2003, the rate of 

patients hospitalized for severe sepsis nearly doubled, and that the resultant mortality rate had 

likewise increased. As the U.S. population ages, this scenario is expected to become even more 

common. For example, those between 65 and 70 years of age have a 5-fold higher chance than 

average of being hospitalized for pneumonia, the most common infectious cause of severe sepsis 

(Yende, Iwashyna, & Angus, 2014). 

From a financial perspective, severe sepsis costs the United States an average of $22,100 

per case. Even higher expenditures were associated with neonates, intensive care unit (ICU) 

patients, surgical patients, and those with multiple organ failure (Angus et al., 2001). By 2011, 

sepsis-related costs had amounted to more than $20 billion, and 5.2 percent of the total 

expenditures for all hospitalizations annually (“Sepsis Study Comparing”, 2014). Per the AHRQ, 

it was the single-most expensive condition to treat in 2011, out of a list of 20, including acute 

myocardial infarction and pneumonia (Torio & Andrews, 2013). Sands et al. (1997) also noted 

that a substantial portion of severe sepsis cases develop outside ICUs. As per their study of eight 

academic medical centers, these accounted for 41% of the incidents of diagnosed sepsis. 

A systematic international overview of hospital-treated and severe sepsis, spanning a 

period of 36 years, concluded that hospital-related mortality averaged 17% and 26% for sepsis 

and severe sepsis, respectively (Fleischmann et al., 2016). The meta-analysis was based on 27 

studies of high-income countries. Fleischmann et al. also asserted that an annual sepsis rate of 

31.5 million, a severe sepsis rate of 19.4 million, and at least 5.3 million deaths were 

extrapolated to the rest of the world, based on a population of 7.2 billion. According the authors, 

this may even be a significant underestimate, as valid studies on sepsis epidemiology in low to 

middle-income countries are generally not available. Some of the increase seen in diagnosed 
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sepsis cases may be due, in certain countries, to the growing use of coding favorable to 

reimbursement for sepsis (Singer et al., 2016). 

The Sepsis Definitions Task Force (Sepsis-3), as convened by the Society of Critical Care 

Medicine and the European Society of Intensive Care Medicine, has worked to improve sepsis 

diagnostic criteria in order to hasten the recognition and early intervention for patients at risk. It 

recognizes that even patients who survive sepsis struggle with long-term physical, psychological, 

and cognitive dysfunction (Singer et al., 2016). There is also evidence of immune system 

disruption, which renders the patient more vulnerable to dying, even several years later ("Sepsis 

Fact Sheet", 2017). The one-year survival rate of those who suffer from a bout of severe sepsis is 

34% (Linner et al., 2013). Providing immediate goal-directed therapy upon diagnosis is essential 

to reducing sepsis-related mortality from the accompanying infection and eventual organ 

dysfunction and shock (Rivers & Ahrens, 2008). According to Rivers et al. (2008), therapeutic 

intervention within six hours of a diagnosis of severe sepsis or severe septic shock has significant 

short and long-term benefits, including the restoration of oxygen balance and prevention of 

cardiac circulatory collapse. Timely management of symptoms can mitigate the development of 

sepsis for those patients most at risk (Singer et al., 2016). 

This study will examine CDS alerts for systemic inflammatory response syndrome 

(SIRS), a precursor to sepsis, and sepsis itself as to their effectiveness in reducing sepsis-related 

mortality at Virginia Commonwealth University (VCU) Health System. These are specialized 

CDS alerts that clinicians, defined as physicians or nurses, see as they are working in the 

computerized charting system, or electronic medical record (EMR). Continual real-time 

assessment of newly entered vital signs and laboratory results that have been designated as SIRS 

and sepsis criteria occurs via the cloud, a type of internet-based computing. A separate algorithm 
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then determines if the patient has SIRS or sepsis based on these physiological and lab data 

elements, and immediately generates a pop-up alert in the patient’s EMR chart for any clinician 

that has a designated relationship with the patient. 

Background 

Timely diagnosis is crucial to the management of sepsis, and the initiation of early goal-

directed therapy is imperative to reducing sepsis-related mortality. Internationally, there are tens 

of millions of cases per year, and increasing lifespans continue to drive the burden of sepsis-

related mortality upward (Melamed & Sorvillo, 2009). Patients in intensive care units are 

particularly susceptible as they are subject to multiple invasive procedures and already 

experiencing immunosuppression (Moore et al., 2010). Those hospitalized for sepsis are on 

average more than eight times as likely to die during their hospitalization, and incidence rates 

more than doubled from 2000 through 2008. (Hall et al., 2011). Reducing mortality requires both 

quick recognition and uniform and consistent application of evidence-based measures. The 

Surviving Sepsis Campaign (SSC), a committee of 30 international organizations with expertise 

on sepsis, convened in 2012 in order to achieve a consensus on comprehensive recommendations 

for sepsis treatment. One of their strongest recommendations included resuscitation of the patient 

within these first six hours after sepsis has been identified (Dellinger et al., 2013). Reliance on 

manual identification of these patients means missing many critical opportunities for intervention 

(Guerra et al., 2013). 

CDS alerts, usually developed locally by hospital information technology staff, have had 

varying levels of success in improving outcomes due to the timing and complexity involved in 

the onset of SIRS and sepsis. To address this, Cerner Healthcare Corporation developed a cloud-

based SIRS and sepsis detection algorithm that continually crawls (i.e. searches) the clinical 
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database looking for values aligning with established criteria for SIRS and sepsis. It gathers 

patient data and discerns patterns for the purpose of proactive risk identification. This data is 

comprised of laboratory test and vital sign orders that are placed at recommended evidence-

based intervals. When the system finds three signs of SIRS, a SIRS alert is generated. When at 

least two signs of SIRS and one sign of organ dysfunction are found, sepsis alerts are generated 

(see Table 1 for a comprehensive list of criteria). The algorithm will always evaluate the most 

recent result for any qualifying criterion, and it uses more stringent physiologic values for sepsis 

than the conventional standard. The qualifying heart rate (HR) is greater than 95 versus 90, the 

respiratory rate is greater than 22 versus 20, and three of four SIRS criteria or two of four with 

one indicator of organ dysfunction is used rather than two or more. (Kaplan & Pinksy, 2011). 

While they are signed into PowerChart, clinicians receive SIRS and sepsis alerts (see Appendices 

A & B) on qualifying patients for whom they are responsible. When the patient presents with 

SIRS, a rapid pattern of deterioration emerges and they may soon progress on to sepsis, septic 

shock, and death, once the initial indicators have appeared. SIRS and sepsis are identified by the 

algorithm when criteria in Table 1 are found in the EMR. 

Table 1 

SIRS & Sepsis Alert Criteria used by the VCU Health System 

Criteria for SIRS and Sepsis Alerts 
(Ranges may change based on patient's age) 

SIRS Alert - The patient must meet at least 
three SIRS criteria: 

Sepsis Alert - The patient must meet at 
least two SIRS criteria and one Organ 
Dysfunction criterion: 

Temp (>38.3°C or <36°C) Lactic Acid Level (>2.0 mmol/L) 
HR (>95 bpm) SBP (<90 mmHg) 
RR (>22 b/min) MAP (<65 mmHg) 
Glucose Level (>180 mg/dL or <50 mg/dL) Creatinine Level (0.5 mg/dL increase) 
WBC ( >12 K/CMM or <4 K/CMM) Total Bilirubin (>2 mg/dL) 
Bands (>10% immature neutrophils)   
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In this study, the clinically-activated SIRS or sepsis alert is the intervention that the 

relevant clinicians received. The delivery method was Cerner’s Discern Notify alerting 

functionality. When a clinician signs in to PowerChart, the EMR used for charting, a 

relationship, i.e. assignment, is automatically established with all of the patients on the 

clinician’s designated unit. If a patient meets the criteria established for a SIRS or sepsis alert, 

based on the continuously running sepsis-detection algorithm, a flashing red exclamation point 

icon appears in the lower right-hand corner of the chart. This occurs each time a clinician that is 

linked with the patient signs in. The clinician must then click on the icon in order to expand the 

alert on the screen and read the instructions on how to proceed, otherwise the red exclamation 

point will persist until the alert is acknowledged by clicking on it. The alerts themselves contain 

patient identifying information such as name, medical record number, birthdate, location, and the 

clinical criteria that generated the alert (See Appendices A & B). There are also numbered steps 

for the clinician to take, including reassessing vital signs, contacting the physician, documenting 

actions taken, and escalating to the Chief of Staff in the event of a non-timely response by the 

covering provider. The addition of an associated therapeutic PowerPlan, called Sepsis Initial 

Resuscitation, is recommended. It is a Cerner order set bundle specific to a plan of care. The plan 

includes initial evaluative laboratory tests, a chest x-ray, oxygen therapy, and various 

medications including continuous infusions, antimicrobials, vasoactive agents, and 

corticosteroids (See Appendix C).  

Prior to the alert implementation, VCU Health System collected alert data via a “silent 

mode” process for six months, which coincided with the latter half of the pre-implementation 

period. Clinicians did not see any real alerts generated in the EMR during this time. This was an 

important step that was done in order validate the alert algorithm’s sensitivity and specificity, so 
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that feedback could be incorporated, and reference ranges adjusted if needed. The only changes 

made were to exclude patients in surgery and recovery room suites for the periods they were in 

those areas. Once the “silent mode” alert evaluation process was complete, the alerts were turned 

on in the production environment. The alerts were switched on concurrently for all inpatient 

units, with the exception of pediatrics. 

Study Aim 

The overarching aim of this prospective study was to determine whether the 

implementation of a Cerner cloud-based SIRS and sepsis alerting system, customized for VCU 

Health System by the primary investigator (PI), resulted in a significant reduction of sepsis-

related mortality. The alerts were also anticipated to lead to lower average length of stay due to 

earlier sepsis-related intervention and treatment. Additionally, more timely diagnoses of sepsis 

and higher consistent application of interventional order set protocols were anticipated. 

Process Model 

Figure 1 displays a process model developed by the primary investigator that depicts the 

progression from the EMR-based algorithmic evaluation, to the alerts, and then on to the 

anticipated outcomes. First, all VCU Health System inpatients aged 18 and over are continually 

screened by the cloud-based sepsis algorithm. The system-generated laboratory and 

physiological values, as delineated in Table 1, trigger either a SIRS or sepsis alert. The SIRS 

alert will continue to be triggered every 24 hours as long as the patient qualifies for it, and the 

sepsis alert is triggered every 48 hours per patient, per user. Should the patient be treated 

successfully for either SIRS or sepsis, the alerts will not continue to be generated. Once a 

particular SIRS or sepsis alert is opened by an assigned clinician, it will not appear again for the 

same user. The same alert will be displayed to another clinician if it has not been viewed and 
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dismissed by clicking on the red exclamation point in the lower right-hand corner of the chart. 

When an alert appears on the screen, the clinician is expected to read the intervention content, 

take the appropriate therapeutic actions as outlined, and then dismiss the alert by clicking on the 

“X” in the upper right-hand corner (see Appendices A & B).  

 

 Figure 1. Process Model of Interventions and Outcomes Relating to Sepsis Early Detection 
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No orders are generated automatically. Placing them via the Sepsis Initial Resuscitation 

PowerPlan or individually is at the physician’s discretion. The therapeutic recommendations 

contained within the Sepsis PowerPlan are intended to be administered within the “golden six 

hour” window for life-sustaining treatment (Singer et al., 2016). Both alerts will still appear 

regardless of any previous PowerPlans ordered on the patient’s chart. The appearance of the 

SIRS alert is intended to allow clinicians adequate time to evaluate and treat the patient well 

before the onset of sepsis. If the SIRS alert is properly addressed from a treatment perspective, 

then a sepsis alert might never be generated, but this is not guaranteed as patient presentation of 

symptoms may vary. The sepsis alert can be considered the fail-safe, final call to action. A 

patient who had a SIRS alert and then also qualifies for a sepsis alert will receive both. 

It is anticipated that the SIRS and sepsis alerts will lead to improvements in certain 

process outcomes. These include the ordering of the Sepsis PowerPlan on the patient’s chart and 

the recording of a correct diagnosis of sepsis in the EMR. As a result, improved patient outcomes 

are then expected in the terms of reduction of sepsis-related mortality and average length of stay, 

compared to before the implementation of the alerts. The two study hypotheses in the next 

section follow from the model. 

Study Hypotheses 

Reducing sepsis-related mortality requires both early recognition and uniform and 

consistent application of evidence-based intervention protocols. Identification of an anatomical 

infection site within six hours of the presentation of sepsis symptoms is crucial to successful 

intervention and treatment (Rivers et al., 2001). If the physician does not identify sepsis within 

this onset period, it is often too late to save the patient (Rivers & Ahrens, 2008). Castellanos-

Ortega et al. (2010) found that septic shock-related mortality rose by 7.6% with each hour that 
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interventional measures were delayed. The majority of sepsis-related deaths occur in patients that 

were initially admitted to the hospital with less severe sepsis. Rivers et al. (2001) also found that 

when early-goal directed therapy for treating sepsis was employed, the in-hospital mortality rate 

was 30.5% as compared to 46.5% for those treated with standard therapy.  At Mount Sinai 

hospital in New York, a vital-signs triggered CDS alert resulted in a 40% reduction in sepsis 

mortality in 2012. According to Liu et al. (2014), standardizing care for those with less severe 

sepsis could result in a reduction in mortality, as performance improvement initiatives have 

primarily centered on severe sepsis. Lower sepsis-related mortality is therefore anticipated due to 

successful earlier intervention, as a consequence of alert implementation, while the patient is still 

in the hospital. 

Patients with sepsis also had an average length of stay that was 11 days longer than the 

average hospital stay, according to Hall, Williams, DeFrances, and Golosinskiy (2011). A study 

examining the cost of 30-day readmissions following hospitalization with sepsis found that the 

mean length of stay was lengthier than that of acute myocardial infarction (AMI), heart failure, 

chronic obstructive pulmonary disease (COPD), and pneumonia (Mayr et al., 2017). After 

implementation of a triage model for severe sepsis called Sepsis Alert in a university hospital in 

Malmo, Sweden, median length of stay was lowered significantly, from nine to seven days 

(Rosenqvist, Fagerstrand, Lanbeck, Melander, & Åkesson, 2017). Likewise, Austrian, Jamin, 

Doty, and Blecker (2017) demonstrated a significant length of stay reduction from 10.1 to 8.6 

days following the implementation of an ED sepsis advisory alert. It is theorized that the alerts 

will reduce length of stay due to earlier patient intervention and treatment, prior to the onset of 

sepsis. The patient might therefore spend less time in the hospital to recover and be subsequently 
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discharged as a consequence of the aversion of or resolution of sepsis. Based on these 

assumptions regarding sepsis-related mortality and length of stay, it is therefore hypothesized: 

H1: The implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to 

lower sepsis-related mortality and lower average length of stay. 

There has been positive attribution of early sepsis recognition to timely and consistent 

application of interventional order set protocols. Such order set protocols may bundle initial fluid 

resuscitation, maintenance IV fluids, antibiotic therapy, glucose management, and steroid 

utilization together (Dellinger et al., 2013). According to Howell and Davis (2017), the most 

vital component of sepsis therapy is management of the infection. The faster antimicrobials are 

ordered and administered, the lower the attendant risk of infectious complications. An SSC 

performance improvement initiative conducted a 7.5-year study that found increasing 

compliance with the use of recommended order set bundles was correlated to a 25% relative risk 

reduction for sepsis-related mortality (Levy et al., 2014).  More frequent ordering of the Sepsis 

PowerPlan is anticipated due to the higher awareness generated by the alerts, with a direct 

reference to ordering the plan contained within the alert instructions for physicians (See 

Appendix B).  

The implementation of the alerts is also expected to lead to more frequent instances of 

physician-recorded sepsis diagnoses on the patient’s chart within the EMR due to more timely 

and accurate recognition of the specific symptoms of sepsis. According to Rivers and Ahrens 

(2008), the use of sepsis alerting systems based on SSC-recommended scoring models has shown 

promise in assisting clinicians with diagnosing sepsis.  Thus, the following is postulated: 

H2: The implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to 

more ordering of the Sepsis Initial Resuscitation PowerPlan (order set bundle) and more 
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recording of sepsis diagnoses. 

The purpose of this study is to examine the impact of SIRS and sepsis alert 

implementation on the patient outcomes of sepsis-related mortality and length of stay, and the 

process outcomes of ordering the Sepsis Initial Resuscitation PowerPlan and a recording a sepsis 

diagnosis within the EMR.  

Chapter Summary and Overview of Remaining Chapters 

This chapter has laid out the case for improving sepsis-related process and patient care 

outcomes. It highlighted the tremendous costs, both physical and financial, borne by individuals 

and the healthcare system, as sepsis-related disability and mortality continue to rise. 

Additionally, the case for evidence-based sepsis intervention protocols is made, with CDS alerts 

suggested as a viable method for improving patient outcomes, which include sepsis-related 

mortality, length of stay, use of a standardized order set, and a recorded sepsis diagnosis. 

The remaining four dissertation chapters provide a detailed literature review, methods 

used to test the proposed hypotheses, and lastly, the analysis results with an in-depth discussion 

of conclusions. In Chapter 2, literature relevant to this study is scrutinized and synthesized to 

provide a detailed background on related studies. This review underscores the need for 

undertaking this research. Topics investigated in more detail include the role of CDS in the 

EMR, CDS implementation use cases, sepsis-related intervention protocols, and previously 

studied CDS sepsis informatics efforts. The chapter ends with a rationale for the study and the 

knowledge gap it could fill in the biomedical informatics literature. In Chapter 3, methods for the 

study are outlined including research design, variable measurement, sampling strategy, data 

sources, and data analysis. Chapter 4 reports specific findings for each hypothesis based on 

statistical analyses of the data, and then the key features, implications, limitations, and possible 
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directions for further research are discussed in Chapter 5. In conclusion, report references are 

listed along with appendices for items cited in the text. 
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Chapter 2: Literature Review 

 

Overview 

 In order to understand how this study aids in furthering research related to CDS alert 

interventions, this chapter begins by providing a general overview of how CDS works as a 

subsystem within the EMR. It also describes the transformative prospects for the technology, as 

well as its current limitations and challenges. This is followed by a review of the literature that 

covers various types of CDS implementations, including those that are sepsis-related. Manual 

and paper-based sepsis intervention protocols and their more recent translation into CDS 

applications are also examined. Finally, this chapter summarizes deficits in current knowledge 

and the potential for this research study to provide additional insights that can be used as 

feedback for the further refinement of sepsis-related CDS alerts. 

CDS Systems Defined 

CDS systems provide a means for clinicians to proactively interact with electronic 

medical records. Rather than just presenting the user with a static presentation of data, a CDS 

system of rules and alerts can provide guidance, recommendations, and warnings to influence 

and corroborate a clinician’s diagnostic accuracy in terms of prevention, early detection, and 

individualized treatment of maladies (Downing, Boyle, Brinner, & Osheroff, 2009). Adopting a 

suite of CDS rules and alerts can alert clinicians to all sorts of potential errors, including 

prescribing the wrong drug or dose of drug, missing important orders that need to be signed, or 
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choosing a medication or medium to which a patient is allergic (Berner, 2009). CDS systems 

have primarily been implemented in larger for-profit and non-profit healthcare systems. By way 

of observation, they have been nearly unilaterally adopted in academic medical centers, which is 

where the majority of research has been conducted to date. Furthermore, in order to facilitate and 

hasten the adoption of CDS, some researchers advocate the creation of a collaborative 

international CDS knowledge base (Cresswell, Bates, Phansalkar, & Sheikh, 2010). 

According to the Department of Health & Human Services (HHS), the U.S. has topped 

the goal of 50% adoption of EMRs amongst physician practices and 80% of eligible hospitals 

from 2012 - 2013, largely due to provisions outlined in the American Reinvestment and 

Recovery Act (ARRA) stimulus bill of 2009. $19.2 billion was set aside under the Health 

Information Technology for Economic and Clinical Health (HITECH) to stimulate the adoption 

of EMRs, and at this point more than half of eligible providers have received Medicare or 

Medicaid incentive payments for demonstrating Meaningful Use Stage I (U.S. Department of 

Health & Human Services, 2013). At least one CDS rule had to be implemented in order to meet 

the Stage I requirements (Romano & Stafford, 2011).  

A typical CDS system utilized in a healthcare setting provides clinicians with alerts 

customized to its specific workflows and is knowledge-driven, as it mines for clinical data at the 

individual patient level. Most CDS is included as part of the overall EMR suite that healthcare 

systems purchase from a vendor, and typically requires some degree of manual manipulation in 

order to be appropriate for a particular environment (Berner, 2009). It is generally comprised of 

three components: a knowledge base (clinical data), an engine (programming and user interface), 

and specific outputs (targeted advice) (Wright, Print, & Merrie, 2011). From a technical 

perspective, a CDS programmer uses a series of linked, branching Boolean logic statements 
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according to a heuristic function, employing calculations, algorithms, and grouping elements that 

draw upon existing information from a clinical repository (Downing et al., 2009) to create a CDS 

rule. 

 Complexity is inherent in the adoption of CDS, and three categories of major challenges 

have been identified by Sittig et al. (2007): improving the effectiveness of CDS interventions, 

creating new CDS interventions, and disseminating existing CDS knowledge. The 

implementation of CDS has been difficult for healthcare organizations due to numerous factors, 

including a lack of demonstrated interventional evidence-based value models, no standardized 

clinical database architecture, and wide variations in CDS content development. Additionally, 

Wright et al. (2011) have noted that studies on CDS outcomes often relate to technology-led 

initiatives within healthcare systems, rather than clinical needs that have been carefully 

elucidated.   

One of the major limitations to the effectiveness of CDS as a catalyst for improved care is 

low alert acceptance rates, in terms of how the user responds to the presented information, either 

heeding the advice proffered by taking the recommended course of action, such as placing 

orders, or rejecting it. Seidling et al. (2011) found that the graphical display attributes were the 

most important determinant of user alert acceptance. In general, alerts should be categorized by 

clinical risk or severity with the use of text, color, shape, and position. Contemporaneous alerts 

should be shown together, and information that requires action should be clearly delineated. 

Textual information was less impactful to acceptance, but more influential when detailed 

information and direction was given regarding drug-drug interactions, for example (Phansalkar et 

al., 2010). Also per Seidling et al. (2011), mandatory interaction with an alert can lead to lower 

user satisfaction and overreliance on them for accurate knowledge and action in general. Clinical 



www.manaraa.com

 

17 
 

informatics is drawing on human-computer interaction (HCI) design principles to improve 

graphical user interfaces, and these should inform the design and placement of CDS alerts as 

well (Phansalkar et al., 2010). 

By way of experience, frequency of alerting is another CDS user acceptance impediment; 

it can engender frequent clinician overriding or ignoring of the alert recommendations. Thus, it is 

generally recommended that alerts that mandate user acknowledgement should be kept as 

minimal as possible (Phansalkar et al., 2010). A balance needs to be struck between providing 

information in the right manner and frequency in order to effect maximum clinical impact 

(Seidling et al., 2011). 

CDS System Implementations 

There have been mixed outcomes stemming from implementations of both standard 

vendor-provided and institutionally custom-developed CDS alerts. For example, Barnes-Jewish 

hospital in St. Louis, Missouri, created a real-time predictive algorithm to identify patients on 

general medical wards that were experiencing clinical deterioration that put them at a higher risk 

for death, to identify them for transfer into the ICU. With a limited number of ICU beds 

available, this would ensure that they were used for the patients that most needed them. After 

validating and running the algorithm in 2011, the team found that the real-time alerts were highly 

specific for clinical deterioration and correlated with a longer length of stay. Unfortunately, 

notifying the clinicians of the algorithm-identified patients via pager alerts was not associated 

with improved outcomes (Bailey et al., 2013). 

 There have been several attempts to apply CDS successfully in the pharmacy and 

therapeutics realm. Vanderbilt University Medical Center created a custom CDS advising system 

to recommend dosing and monitoring strategies for aminoglycoside (amikacin and tobramycin) 
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orders, and integrated it into their computerized prescriber order entry (CPOE) system. Clinician 

selection of initial drug doses and administration intervals was improved and so were the serum 

drug concentrations, as compared to standard dosing within the institution. However, peak 

concentrations and nephrotoxicity rates showed no deviation from standard practice (Cox, 

Nelsen, Waitman, McCoy, & Peterson, 2011).  

At the University of Illinois Medical Center at Chicago, a vendor-provided CDS system 

was customized and implemented to prompt clinicians to fill out a form documenting the 

administration of venous thromboembolism (VTE) prophylaxis upon admission. Clinicians then 

began to receive alerts in cases of inadequate prophylactic measures. A year post-

implementation, the researchers measured prophylactic compliance rates, bleeding events, and 

diagnoses of hospital-acquired VTE. They found that VTE risk had been significantly lowered in 

the general medical population, but not hospital-wide. A higher percentage of patients had 

received pharmacologic intervention, but there was no change in the amount of bleeding events 

(Galanter et al., 2010). 

 CDS has also been demonstrated to be a cost-effective and scalable clinical intervention 

strategy when integrated with an EMR.  Per Calvert et al. (2017), an algorithm-driven CDS 

biomarker tool for sepsis screening called InSight has been demonstrated to reduce the costs 

related to severe sepsis cases by $560,000 per year in a 50-bed ICU. Additionally, Olenik, 

Zimbro, Ver Schneider, and Jones (2017) found that average patient costs per stay were $1145 

less for patients identified by a sepsis sniffer algorithm within the first four hours of admission. 

Likewise, in a large medical group in Minnesota, Gilmer et al. (2012) have shown that diabetic 

patients had costs significantly lowered when a "Diabetes Wizard" form was employed that 

provided clinical indicators, recommendations for treatment, and safety alerts. Intervention costs 
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were $120 per patient during the first year, and fell to $76 in subsequent years, with clinical 

impact estimated to be equivalent to that of more expensive condition management or education 

programs. 

Research on CDS system effectiveness has shown that the process of care and patient 

outcomes are oftentimes not improved as a result of integration with a facility's EMR or CPOE 

application (Mollon et al., 2009). A Canadian team, as reported by Roshanov et al. (2013), 

conducted a meta-regression of 162 randomized trials to ascertain which features distinguished 

efficacious CDS systems from those that were not. Those systems deemed effective had to 

improve all primary, or at least half of secondary, outcomes of care for certain patient states, 

such as blood pressure, clinical events, and quality of life. Factors associated with success 

included having decision support provided outside of the EMR as a standalone application, 

requiring providers to supply an override reason when not following CDS advice, and CDS that 

offered advice directly to patients as well. Overall, medical care was improved 52-64% across 

studies, and of those that were appraised for impact on patient outcomes, 15-31% demonstrated a 

positive influence. 

Looking forward, cutting-edge CDS systems are beginning to be offered in the artificial 

intelligence realm, utilizing IBM's Watson technology. This is accomplished by having nearly 

instantaneous access to an endless volume of diagnostic information from the internet, including 

academic journals and medical reference texts, that no one human could ever hope to master in a 

lifetime. Such systems, like the Oncology Expert Advisor as implemented at The University of 

Texas MD Anderson Cancer Center, can provide the most appropriate diagnostic responses 

based on the patient's clinical presentation. Thus far, the advisor has appropriately recommended 

appropriate courses of cancer treatment more than 80% of the time (Takahashi et al., 2014). 
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Seemingly, there is ample room for growth and improvement in CDS strategies as new 

technologies are incorporated into EMRs. 

Sepsis-Related Intervention Protocols 

Select studies within the last decade have examined the correlation between evidence-

based early intervention protocols and sepsis clinical outcomes. These efforts have focused on 

identification of sepsis patients by manual observation methods. Rivers and Ahrens (2008) 

delineate quality improvement initiatives and highlight the use of evidence-based protocol 

screening tools like paper checklists and tracking forms. Christiana Care Health System created 

and implemented a “Sepsis Alert” handout packet that incorporated a care management guideline 

for nursing, a treatment algorithm in the form of a flowchart, and an order set bundle. This 

resulted in a 49.4% reduction in sepsis-related mortality rates from 2005-07 (Zubrow et al., 

2008). Powers and Burchell (2010) describe similar intervention protocols based on general, 

inflammatory, hemodynamic, organ dysfunction, and tissue perfusion variables, with 

concomitant mortality reduction of up to 16%. 

Sepsis Informatics and CDS 

CDS specifically designed to aid with early sepsis detection has been the next step in the 

evolution of sepsis intervention protocols.  For example, Methodist Hospital in Houston 

implemented a computerized CDS sepsis database. Their mandatory manual sepsis-screening 

tool in combination with the computerized CDS protocol lowered mortality from 35.1% to 

23.3% over the course of two years. The three-step tool, developed in conjunction with a 

literature review and multidisciplinary local expert consensus for the surgical intensive care unit 

(SICU), was intended to involve the entire bedside clinician team (Moore et al., 2009). They 

attributed the results to early identification and timely, consistent application of interventional 
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protocols (Moore, Turner, Todd, McKinley, & Moore, 2010).  Additionally, Sawyer et al. (2011) 

associated a real-time sepsis-screening pager alert to prompt and appropriate clinician 

interventions among non-intensive care unit (ICU) patients.  

Another approach cited as successful by Moorman, Xiao, Griffin, and Lake (2005) 

involved an online sepsis prediction system for premature infants based on heart rate 

characteristic (HRC) abnormalities. Nearest-neighbor models were first trained and tested on 

HRC and lab data from over 300 patients. Resulting analyses that were developed using various 

combinations of demographic, laboratory, and physiological sepsis-related parameters were 

highly significantly associated with an imminent sepsis diagnosis, prior to signs of clinical illness 

appearing.  

Likewise, Meurer et al. (2009) delineate the results of a simple timed alerting system 

developed at the University of Michigan Medical Center. Its intent was to identify elderly 

emergency department (ED) patients at high risk of infection, or evidence of two or more SIRS 

criteria, during their stay in the ED. They concluded that the tool was able to detect infection in 

this patient population with low sensitivity but high specificity, and that it might have better 

clinical care and research utility with additional optimization. 

Berger, Birnbaum, Bijur, Kuperman, and Gennis (2010) reported that an automated alert 

was associated with higher rates of lactate testing in sepsis patients in the ED with greater than 

two SIRS criteria, but that it did not alter mortality rates. Furthermore, Herasevich, Pieper, 

Pulido, and Gajic (2011) implemented what they termed a “septic shock sniffer” to be used to 

enroll ICU patients at the Mayo Clinic into a time-sensitive clinical echocardiography in severe 

sepsis study. The near real-time alerting system paged a research coordinator regarding 

potentially qualifying patients. A resultant positive prognostic value of 34% was sufficient to 
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positively double enrollment compared to the pre-implementation period. A few years later, the 

system was further developed and refined as a clinical intervention. The initial design, informed 

by manual chart review of adults with severe sepsis/septic shock that had been admitted to the 

ICU, was translated into an automated surveillance algorithm integrated into their EMR. This 

was done by recursive data partitioning, in order to realize iterative improvements based on 

feedback from previous runs. They found being positive for SIRS, having low systolic blood 

pressure, and a suspected infection were the cluster of items that had the best predictive value, 

and indicated that a prospective study would be needed to clinically validate the sniffer (Harrison 

et al., 2015). 

Another near real-time EMR notification alerting system implemented in an academic 

ED was described by Nelson, Smith, Jared, and Younger (2011). Physiologic vital signs, 

confirmed first by nurses, were collected at predetermined intervals and evaluated. 

Approximately 50% of the patients alerted had already experienced the sepsis-related 

interventions under study, namely increases in ordering of lactate tests, blood cultures, chest x-

rays, and antibiotic administration. It was determined that the alerting algorithm increased the 

performance of some of the targeted interventions, but it did not show a high positive predictive 

value. Additionally, Back, Jin, and Lee (2014) constructed an inpatient sepsis risk assessment 

algorithm called the Auto-SepRAS, which was implemented in a university hospital in Seoul, 

South Korea. It was updated daily with seven variables extracted from the EMR and classified 

patients into low, medium, or high sepsis risk categories in order to help tailor care strategies 

depending on the risk group to which they were assigned.  

More recently, Olenik et al. (2017) assessed an in-house developed CDS sniffer 

algorithm at an integrated healthcare delivery system consisting of 12 southeastern US hospitals 
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with a variety of EMRs. The algorithm evaluated manually entered results every 12 hours to help 

identify patients at high risk for sepsis by evaluating their clinical condition. Results showed an 

average length of stay of one day less when high sepsis risk was identified within four hours of 

admission, but there was no statistically significant effect demonstrated on sepsis-related 

mortality. 

In terms of other approaches, Mani et al. (2014) developed a predictive modeling system 

from off-the-shelf EMR data for a neonatal patient population using machine learning 

techniques, which allow the system to automatically improve as it learns, without additional 

human programming. The sensitivity of the algorithms developed exceeded that of physicians 

when culture-negative sepsis cases were excluded from that population. A follow-up study may 

assess its utility in improving antibiotic use, however, there was no interactive alerting capability 

included, nor in the previously-described HRC model. Gultepe et al. (2014) detail another 

machine learning methodology used with adult patients at University of California Davis who 

met at least two SIRS criteria. Lactate level, sepsis occurrence, and mortality risk were able to be 

inferred from laboratory results and other heterogeneous patient data. 

Furthermore, Johns Hopkins University researchers developed a supervised learning 

approach, a subset of machine learning that infers function from a designated data set, to train a 

system model that takes the censoring effects of clinical interventions, such as fluid 

administration, on patient outcomes into account. From there, they created a custom targeted 

early warning score (TREWScore) for early identification of those at risk for septic shock and 

concomitant organ failure (Henry, Hager, Pronovost, & Saria, 2015). The score was a research-

based predictive tool not integrated into an EMR. It was compared to the previously used 

Modified Early Warning Score (MEWS), a more generalized version that has been used for 
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surgical inpatients, and a routine screening protocol for SIRS (Gardner-Thorpe, Love, 

Wrightson, Walsh, & Keeling, 2006). Their analysis of 16,234 distinct ICU patients, aged 15 

years or over, from a publicly available data set of deidentified EHRs collected at Beth Israel 

Deaconess Medical Center in Boston, revealed that that not only did the TREWScore perform 

better versus the MEWS, but it achieved a sensitivity rate of 85%, higher than the routine 

protocol, while demonstrating a similar level of specificity as a predictive tool. 

Finally, according to Vogel (2014), New York’s Mount Sinai hospital had seen a 

reduction in sepsis mortality in the year 2012 as compared to 2011, with the rate dropping from 

33% to 16%, putting it ahead of peer facilities. This was following its implementation of a non-

cloud-based sepsis alert, triggered when vital signs that match criteria for early sepsis are entered 

into the chart, and prompting a bedside call by a nurse practitioner. The alert facilitated earlier 

identification and standardization of timely response protocols and patient transfers.  

While the number of CDS studies has increased over the last couple of decades, little 

previous research has specifically correlated real-time, computerized interactive sepsis alerts 

with clinical outcomes, although momentum has been growing rapidly in this area within the last 

few years as the technology matures. Instead, computer-enabled screening forms and databases, 

alerts based on asynchronous or timed triggers, or near real-time alerts have been deployed, as 

cited in the previous examples in this section. The exceptions are Bailey et al. (2013), who 

explored the use of real-time alerts to notify clinicians regarding clinical deterioration, and 

Sawyer et al. (2011) who studied outcomes related to sepsis screening alerts. 

Knowledge Gaps 

Initially, identification of the at-risk sepsis patient was based on manual observation and 

the implementation of evidence-based protocols. Positive outcomes from CDS attempts for 
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sepsis identification and intervention are preliminary and some are solely prognostic and not 

clinically validated, with others being anecdotal yet promising (Moore et al., 2009). To date, 

there has been research relating to improving survival rates for sepsis, applications for clinical 

trial enrollment predictive modeling and simple alerting, as previously outlined. These have 

primarily been CDS systems that work at predetermined intervals and do not run on a real-time 

basis. The CDS systems evaluated here that do run in real-time are not based on custom cloud-

based algorithms, as the CDS SIRS and sepsis alerts in this study do. Increasingly, machine 

learning methods have been employed, but the cloud-based crawler algorithm design is relatively 

new. As Despins (2017) has underscored in a systematic review of CDS sepsis detection 

systems, better patient outcomes can, but do not necessarily follow from earlier intervention, as 

study results have varied widely. The following research is intended to add to our knowledge of 

the literature as a process and patient outcomes evaluation of a unique real-time, cloud-based 

CDS alerting tool employed so that septic patient recognition and care are improved, and sepsis-

related mortality is reduced. 

Chapter Summary 

 EMR systems and to a somewhat lesser extent, CDS, have become ubiquitous in the 

healthcare organization landscape. This chapter described some of the many challenges inherent 

in creating effective CDS alerts in general considering the lack of standardized implementations, 

low user alert acceptance rates, and a dearth of foundational research to inform their design, in 

particular for sepsis alerts, among others. Research surrounding CDS implementations has thus 

far generated equivocal results, and there remains a gap between uncovering the aspects of the 

most impactful CDS alerting, refining it from a clinical perspective, and translating those 

findings into practice. Literature examining electronic sepsis-related CDS interventional 
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protocols is limited, yet it shows some early promise in reducing sepsis mortality and related 

complications.  
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Chapter 3: Methodology 

 

Research Design 

Non-probability, consecutive sampling was used for a prospective, pre-post study design.   

The study was prospective as it was planned prior to the implementation of alerts and the 

variables of interest were chosen up front to see how they would impact patient and process 

outcomes. The pre-implementation group consisted of patients diagnosed with sepsis in the EMR 

during an inpatient stay within the year preceding the alerts going live, from September 2012 

through September 2013. The total post-implementation observation period spanned three years, 

from September 2013 through December 2016, and included interruptive, actionable alerts 

generated via Discern Notify. Discern is Cerner’s alert generating system, which in this case is 

based on a patient’s relationship to a designated clinician.  

The research tested the study hypotheses by estimating the relationship between the SIRS 

and sepsis alerts and various patient-related and diagnostic factors for the post-implementation 

group as compared to a pre-implementation group. To test H1, binary logistic regression was 

used to estimate the relationships between the each of the two independent variables, SIRS and 

sepsis alerts, and the dependent variable sepsis-related mortality. Multiple linear regression was 

used to test the relationships between SIRS and sepsis alerts and the dependent variable length of 

stay. For H2, multiple linear regression was used to estimate the relationships between SIRS and 

sepsis alerts and the dependent variable Sepsis Initial Resuscitation PowerPlan, and binary 
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logistic regression was used to test the relationships between SIRS and sepsis alerts and the 

dependent variable sepsis diagnosis. 

The study took place at VCU Health System’s Main Hospital, an early adopter of the 

SIRS and sepsis alerts, in partnership with their primary healthcare information system vendor, 

Cerner Corporation. The hospital has 865 beds and is a regional referral center for the state and 

the region’s only Level I Trauma Center.  

Sampling Strategy 

Consecutive sampling was used, as all patient visits meeting the inclusion criteria were 

selected. The sample size was calculated similarly to an earlier analysis done with an automated, 

non-cloud-based computerized sepsis alert delivered via pager for non-ICU patients, as reported 

by Sawyer et al. (2011). The researchers assumed post-alert intervention rates between 60% and 

75%. For purposes of this research, these intervention rates are estimated at 70%, as VCU Health 

System alert algorithm is highly specific, with a low possibility of false negatives. It was 

calculated that at least 304 patients were needed to achieve a .80 power level with a two-sided 

significance level of .05, and 1,000 or more patients are an adequate sample size to provide a 

power level near 1.0. The total cohort size amounted to 11,262 unique patient visits, comprised 

of 9,087 individual patients. 

A pre-implementation group was also obtained from the one-year period prior to the 

alerts going live. Patients that died in the hospital with a sepsis diagnosis or were discharged 

with a sepsis diagnosis during the 12 months preceding the cloud alert rollout comprised the pre-

implementation group. The post-implementation group consisted of 9,711 unique visits. Only the 

patient visits meeting all the study group inclusion criteria as specified in Table 2 appeared in the 

queried results. This should diminish any concerns relating to selective reporting bias. If a patient 
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did not fall within VCU Health System’s defined ranges for laboratory values and vital signs (see 

Table 1), then a SIRS or sepsis alert was not triggered. Test results were entered into the EMR 

manually by clinicians and automatically via peripheral systems such as chemistry analyzers and 

patient bedside monitors.  

Table 2 

Study Inclusion Criteria 

Inclusion Criteria for Pre-Implementation Group (N = 1551) 
Age: >= 18 
and located in any inpatient (IP) unit 
and Sepsis Diagnosis present on chart 

Inclusion Criteria for Post-Implementation Group (N = 9711) 
Age: >= 18 
and located in any inpatient (IP) unit 
and (Sepsis Diagnosis present on chart  
or at least one SIRS or Sepsis Alert triggered  
or Sepsis Initial Resuscitation PowerPlan ordered on chart) 

 

Study Sample 

The total number of SIRS and sepsis alerts averaged 2,319 per year over the three-year 

period from September 2013 through December 2016, while the number of unique patients 

receiving at least one of either alert averaged around 1492. The pre-implementation group that 

had been diagnosed with sepsis within the year leading up to the beginning of the study, from 

September 2012 through September 2013, consisted of 1,551 inpatient visits. The three-year 

post-implementation sample size was 9,711 inpatient visits. The total number of patient visits 

meeting the inclusion criteria was 11,262. Table 3 contains summary statistics of pre-

implementation, post-implementation, and combined sample data. 
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Table 3 

Summary Statistics of Group Characteristics 

 

Pre-
Implementation 

Group 

Post-Implementation 
Group 

Combined Samples 

Total number of patients 1551 (09/12–
09/13) 

9711 (09/13–12/16) 11262 (09/12–
12/16) 

Age (Mean) 56 years 55 years 55 years 
Gender  Male = 54% 

Female = 46% 
Male = 56% 
Female = 44% 

Male = 56% 
Female = 44% 

Ethnicity 
American Indian/Alaskan   
Asian 
Black or African American 
Native Hawaiian/Other 
Pacific Islander 
Other/Unknown 
White 

 
<1% 
1% 
53% 
 
<1% 
3% 
43% 

 
<1% 
1% 
50% 
 
<1% 
4% 
45% 

 
<1% 
1% 
51% 
 
<1% 
3% 
45% 

Medical Service (Count) 58 total 
services 

36 total services 62 total services 

Sepsis Mortality (% of 
Total) 

21.10% 16.14% 16.83% 

SIRS Alerts (One or more 
per patient visit) 

 1901 (42% of total) 1901 

Sepsis Alerts (One or more 
per patient visit) 

 3290 (73% of total) 3290 

Total number of patients 
receiving at least one SIRS 
or Sepsis Alert or both 

 4524 4524 

 
Note. The Chi-square statistic (X2(2)) for a comparison of proportions between the pre-
implementation and post-implementation groups on sepsis mortality is 23.51. The result is 
significant at p < 0.0001. 
 

Variable Measurement 

Table 4 relates each hypothesis to specific study variables and methods of analyses, while 

Table 5 briefly describes the independent, dependent, and control variables used in this study.  

Independent Variables. 

 The independent variables chosen were SIRS alerts and sepsis alerts. In all analyses 
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Table 4 

Hypotheses, Variables & Analyses 

Hypothesis 1 Variables Analyses 
The implementation of cloud-
based SIRS and sepsis alerts in 
the EMR will lead to lower 
sepsis-related mortality and 
lower average length of stay. 

IVs: SIRS alerts, Sepsis alerts 
DVs: Sepsis-related 
mortality, Length of stay 
(LOS) 
CVs: Medical Service, Age, 
Gender, Ethnicity 

Logistic regression and 
multiple linear regression to 
model the relationship 
between each of the IVs and 
the DVs. CVs are held 
constant.  

 
 

Hypothesis 2 Variables Analyses 
The implementation of cloud-
based SIRS and sepsis alerts in 
the EMR will lead to more 
ordering of the Sepsis Initial 
Resuscitation PowerPlan 
(order set bundle) and more 
recording of sepsis diagnoses. 
 

IVs: SIRS alerts, Sepsis 
Alerts 
DVs: Ordering of Sepsis 
Initial Resuscitation 
PowerPlan, Sepsis diagnosis 
coding 
CVs: Medical Service, Age, 
Gender, Ethnicity 

Logistic regression and 
multiple linear regression to 
model the relationship 
between each of the IVs and 
the DVs. CVs are held 
constant. 

 
Table 5 

Study Variables and Definitions 

Dependent 
Variables  Definition Analysis 

Sepsis-related 
mortality 

This categorical variable has the two possible responses of 
deceased (0) or alive when left the hospital (1). Deceased (0) 
represents inpatients who died in the hospital as a result of 
sepsis, prior to having the opportunity to be discharged. 

H1 

Length of stay 
(LOS) 

This continuous variable represents the number of days that 
the patient resides in an inpatient unit; the period ranging 
from admission to discharge (1 – 464 days). 

H1 

Sepsis 
Resuscitation 
PowerPlan 

This continuous variable represents the number of times the 
standard Sepsis Initial Resuscitation PowerPlan is ordered in 
the Cerner EMR per patient visit. 

H2 

Sepsis diagnosis This categorical variable represents the official ICD-9 or 
ICD-10 codes as recorded by a physician in the sepsis 
diagnostic category. The possible values are Yes (1) or No 
(0), representing the presence or absence of a recorded 
diagnosis code. 

H2 
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Table 5 - Continued 

Independent 
Variables  Definition Analysis 

SIRS Alerts  This categorical variable represents the presence (1) or 
absence (0) of one or more SIRS alerts during the patient’s 
visit. It was made categorical as a small number of patients 
with very high numbers of SIRS alerts as outliers caused 
skewness in the distribution. It is used in conjunction with the 
dependent variables Sepsis-related mortality, Length of stay, 
and Ordering of Sepsis Initial Resuscitation PowerPlan. 

H1 & H2 

Sepsis Alerts  This categorical variable represents the presence (1) or 
absence (0) of one or more sepsis alerts during the patient’s 
visit. It was made categorical as a small number of patients 
with very high numbers of sepsis alerts as outliers caused 
skewness in the distribution.  It is used in conjunction with 
the dependent variables Sepsis-related mortality, Length of 
stay, and Ordering of Sepsis Initial Resuscitation PowerPlan. 

H1 & H2 

SIRS Alerts  This continuous variable represents the number of unique 
SIRS alerts per patient visit, ranging from 1 – 17. It is used in 
conjunction with Sepsis diagnosis dependent variable only. 

H2 

Sepsis Alerts  This continuous variable represents the number of unique 
sepsis alerts per patient visit, ranging from 1 - 34. It is used in 
conjunction with Sepsis diagnosis dependent variable only. 

H2 

Control  
Variables Definition Analysis 

Age This continuous variable represents the adult patient’s age, 
within a range of 18 to 120 years. 

All 

Gender This categorical variable represents the gender as male (1) or 
female (0). 

All 

Ethnicity  This categorical variable represents coded ethnic categories in 
the Cerner EMR as Hispanic or Latino, American Indian or 
Alaska Native, Asian, Black or African American, Native 
Hawaiian or Other Pacific Islander, White, or Unknown. 

All 

Medical Service  This categorical variable is a hospital-specific numeric code 
and description that represents a medical specialty, per 
inpatient stay. 

All 

 

except those that measure the recording of the sepsis diagnosis dependent variable, they were 

represented as binary, defined as the presence (1) or absence (0) of one or more alerts of either 

type during a patient visit. This operationalization was chosen as a small number of patients had 

a very high number of SIRS or sepsis alerts. For the sepsis diagnosis dependent variable analyses 
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only, the independent SIRS alerts and sepsis alerts variables were characterized as continuous, or 

the numeric value of SIRS or sepsis alerts per visit, as all patient visits used in the analyses had 

alerts (SIRS alerts range: 1 – 17; sepsis alerts range: 1 – 34). 

Dependent Variables. 

The dependent variables chosen were sepsis-related mortality, length of stay, ordering of 

the standard Sepsis Initial Resuscitation PowerPlan, and the recording of sepsis diagnosis. All of 

the dependent variables were linked together with the independent variables by way of a person 

identification number. Sepsis-related mortality was represented as binary categorical variable 

with the two possible responses of deceased in the hospital as a result of sepsis (0) or alive at 

discharge (1), as the study was not designed to track patients post-discharge. In order to measure 

total inpatient time from admission to discharge, the length of stay in whole days, as recorded in 

the EMR, was chosen as a continuous variable. The variable was classified as continuous as it is 

numeric and can take on any value within its range (1 – 464). 

The Sepsis Initial Resuscitation PowerPlan is a predefined Cerner evidence-based order 

set bundle that includes the proper laboratory and medication response protocols, depending on 

the alert type and urgency. As a variable, it represents the number of times the PowerPlan is 

ordered in the Cerner EMR per patient visit, and was chosen to represent the clinician’s 

interventional response to the alerts. Due to a high number of patient visits having no PowerPlan 

ordered, the original range of the variable was from zero to three, and the distribution skewed. 

Therefore, as a count variable representing a finite number of PowerPlans, it had to be converted 

from a discrete into a continuous variable, which was accomplished by first normalizing the data 

with a logarithmic transformation. This conversion was necessary in order for the variable to be 
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appropriate for the multiple linear regression analyses and consistent with the overall choice of 

using regression techniques for the study data. 

Several related ICD-9 and ICD-10 codes characterize the binary categorical sepsis 

diagnosis variable (See Appendix D). ICD stands for “International Classification of Diseases.” 

The possible values are Yes (1) or No (0), representing the presence or absence of a recorded 

sepsis diagnosis code. The global use of these codes for clinical diagnostic purposes is a World 

Health Organization (WHO) developed standard. The codes monitor disease and health condition 

incidence and prevalence. Selection of ICD-10 codes is mandatory for every patient, and done 

with the assistance of a “Problem and Diagnosis” tool within the Cerner EMR. Gaieski, 

Edwards, Kallan, and Carr (2013) found that the retrospective use of ICD-9 codes was highly 

accurate for identifying severe sepsis diagnoses. 

Control Variables. 

Factors commonly known to impact sepsis-related outcomes, such as age, gender and 

ethnicity, are included as control variables in all analyses (Sawyer et al., 2011). Standardized 

rates of mortality and hospitalization have frequently been stratified by age and gender because 

severe sepsis tends to affect the very young and the elderly more, and males more frequently 

than females (Dombrovskiy, Martin, Sunderram, & Paz, 2007). Angus et al. (2001) and Galanter 

et al. (2010) also adjusted for high-risk comorbidities, while racial and ethnic group disparities in 

sepsis-related mortality were found by Melamed and Sorvillo (2009). Medical service, or 

specialty, used by hospitalists to categorize patients upon admission into groups like surgery, 

telemetry, critical care, palliative care, rehab, etc., is also included as a control variable 

representing the clinical acuity and complexity of a patient, which can vary and is expected to be 

associated with particular medical conditions because the categories frequently overlap. Medical 
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services like critical care, for example, would be indicative of patients that are likely 

experiencing life-threatening organ-system failure. 

Data Sources 

The data were obtained from a real-world healthcare environment. This should provide 

valuable insight into the effectiveness of the proposed intervention, since de-identified health 

data were collected as a by-product that represents actual patient care. The large queries were run 

on a data warehouse, which is a copy of the Cerner production environment that is refreshed 

nightly. The databases are the property of VCU Health System as maintained by Cerner 

Corporation in their Kansas City, Missouri, Data Center. Data elements were retrieved as 

follows: 

1. Length of stay, diagnosis, medical service, age, gender, ethnicity: Cerner Millennium 

Clinical Database (PowerInsight) 

2. SIRS and sepsis alerts and sepsis order set bundles: Cerner HealtheIntent Discern 

Analytics 2 (DA2) Report 

If there were any non-standard or undefined values contained in the fields that the 

algorithm draws upon, the patient would not have qualified for an alert. Therefore, there was a 

slight risk of missing a patient based an anomalous result being entered or auto-generated. Given 

that the algorithm was continually looking at new results, there was a high likelihood that any 

qualifying patient would get at least one, and probably multiple automated alerts during their 

stay. There were no missing variable values within the data, which can be attributed to these 

values being required data fields for every patient in Cerner. In addition, VCU Health System 

uses nationally recommended norms for laboratory value reference ranges. Standardization of 

data elements within the Cerner EMR means that data quality is reasonably high, as data must 
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conform to predefined parameters. System data elements are all defined and actualized in a 

similar manner, and testing methods and algorithmic content are consistent, enhancing the 

reliability and validity of the overall data. Although there may be minor variations in the 

reference ranges used by other academic hospitals to measure laboratory and physiologic criteria, 

they should not be large enough to impair the generalizability of results to those hospitals. 

Existing patient information, including demographic and clinical data, was de-identified 

for purposes of this study. The Cerner clinical database queries were conducted securely on 

password-protected and encrypted cloud-based storage to ensure patient privacy. The Health 

Insurance Portability and Accountability Act (HIPAA) Privacy rule safeguarded patient 

confidentiality, yet ensured that the medical information needed to conduct this study was 

available for examination and analysis. 

Data Analysis 

Data collection and analysis took place three years after live implementation of the sepsis 

cloud alerting system. The data were retroactively gathered via clinical database queries, for the 

purpose of identifying all the eligible cases within a three-year interval. Therefore, the actual 

clinical data extraction process from the data warehouse took place once the alerts were active in 

the system for three years. The nature of the study itself was still prospective as the study was 

designed prior to the implementation of the alerts. The pre-implementation group consisted of 

1,551 inpatient visits, each having a recorded sepsis diagnosis in the EMR in the year up leading 

up to the activation of the alert intervention. The three-year post-implementation group was 

comprised of 9,711 unique visits. The total cohort amounted to 11,262 unique patient visits. 

Contingency tables were generated for the purpose of contrasting the pre- and post-

implementation cohorts on the distribution frequency of sepsis-related mortality, whereas 
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comparisons of means and population proportions were done for average length of stay and 

Sepsis Initial Resuscitation PowerPlan, respectively. The pre-implementation cohort consisted of 

patient visits with a recorded sepsis diagnosis on the chart. As a recorded sepsis diagnosis was 

also one of the selection criteria for the post-implementation group, the whole post-

implementation group (N = 9711) could not be used as a valid basis for comparison. The post-

implementation group who received alerts (N = 4524) was made up of patient visits with one or 

more SIRS alerts, sepsis alerts, or both, and is a subset of the post-implementation cohort (N = 

9711). The alerted post-implementation cohort used was not the sum of those who had one or 

more SIRS alerts (N = 1901) and one or more sepsis alerts (N = 3290) because some patients 

visits had both SIRS and sepsis alerts, and these were counted together as one instance. 

In order to test the hypotheses, a total of eight separate regressions were run. Table 6 

characterizes each analysis as it relates to its corresponding hypothesis. Multiple linear 

regression was an appropriate method to use for the four study analyses that used the continuous 

variables length of stay and Sepsis Initial Resuscitation PowerPlan. Binary logistic regression 

was used for the four analyses for which the dependent variables of interest, sepsis-related 

mortality and sepsis diagnosis, were categorical and dichotomous (Alexopoulos, 2010). The 

independent variables are the same for each hypothesis: SIRS and sepsis alerts. The same control 

variables were used in each analysis: age, gender, ethnicity and medical service.  

For the dependent variable sepsis diagnosis, the two analyses only were conducted using 

patient visits that had one or more SIRS alerts (N = 1901) and one or more sepsis alerts (N = 

3290; see Table 6), that is, observations only collected from the post-implementation period.  

This varied from the other six analyses that used the combined samples (N =11262). The use of 

only post-implementation data was due to the fact there were no alerts present in the pre- 
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Table 6 

Descriptions of analyses 

Subhypothesis Sample Method Description Outcome 
The implementation of 
cloud-based SIRS alerts 
is associated with lower 
sepsis-related 
mortality. 

Combined samples 
(N = 11262) 
 

Binary 
logistic 
regression  

No SIRS alerts 
compared to >0 
alerts 

Sepsis-related 
mortality 
probability: 
Deceased =0 
Alive=1 

The implementation of 
cloud-based sepsis alerts 
is associated with lower 
sepsis-related 
mortality. 

Combined samples 
(N = 11262) 
 

Binary 
logistic 
regression 

No sepsis alerts 
compared to >0 
alerts 

Sepsis-related 
mortality 
probability: 
Deceased =0 
Alive=1 

The implementation of 
cloud-based SIRS alerts 
is associated with lower 
average length of stay. 

Combined samples 
(N = 11262) 
 

Multiple 
linear 
regression 

No SIRS alerts 
compared to >0 
alerts 

LOS in days: 
Continuous 

The implementation of 
cloud-based sepsis alerts 
is associated with lower 
average length of stay. 

Combined samples 
(N = 11262) 
 

Multiple 
linear 
regression 

No sepsis alerts 
compared to >0 
alerts 

LOS in days: 
Continuous 

The implementation of 
cloud-based SIRS alerts 
is associated with more 
ordering of the Sepsis 
Initial Resuscitation 
PowerPlan. 

Combined samples 
(N = 11262) 
 

Multiple 
linear 
regression 

No SIRS alerts 
compared to >0 
alerts 

PowerPlans 
ordered: 
Continuous 

The implementation of 
cloud-based sepsis 
alerts is associated with 
more ordering of the 
Sepsis Initial 
Resuscitation 
PowerPlan. 

Combined samples 
(N = 11262) 
 

Multiple 
linear 
regression 

No sepsis alerts 
compared to >0 
alerts 

PowerPlans 
ordered: 
Continuous 

The implementation of 
cloud-based SIRS alerts 
is associated with more 
recorded sepsis 
diagnoses. 

Post-
implementation 
group (N = 9711) 
subset with SIRS 
alerts (N = 1901) 

Binary 
logistic 
regression 

Impact of each 
additional SIRS 
alert on the 
dependent 
variable 

Sepsis 
diagnosis 
probability: 
Y/N 

The implementation of 
cloud-based sepsis alerts 
is associated with more 
recorded sepsis 
diagnoses. 

Post-
implementation 
group (N = 9711) 
subset with sepsis 
alerts (N = 3290) 

Binary 
logistic 
regression 

Impact of each 
additional 
sepsis alert on 
the dependent 
variable 

Sepsis 
diagnosis 
probability: 
Y/N 

 
Note. Subhypothesis variables are in boldface. 
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implementation group, which was selected solely on the basis of a recorded sepsis diagnosis 

being present in the patient’s chart, and that the presence of a sepsis diagnosis on the chart was 

also used as one of the post-implementation group inclusion criteria. Sepsis-related mortality and 

average length of stay were hypothesized to be lower, and accurate diagnoses of sepsis and 

utilization of interventional order sets were projected to be higher after the implementation of the 

alerting system. The software application used to analyze all of the data was IBM Statistical 

Package for the Social Sciences (SPSS), version 24. A missing value analysis was also run, and 

no cases were found. All study data pulled from Cerner come from required fields. 

Chapter Summary 

This chapter provided a summary of the study's research design, namely that of a 

consecutive, prospective study with a pre-implementation group. It further went on to describe 

the technology behind the intervention, the clinical processes associated with it and the 

organization at which it took place. Additionally, variables and their respective measurements 

were outlined along with the sampling strategy, and the data sources were disclosed. Finally, the 

data analysis methodologies and their appropriateness for the study were covered. 
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Chapter 4: Results 

 

 This chapter presents the results of the study. In particular, it details the quantitative 

results for the two hypotheses, as described in Chapter 3, with contingency tables, comparisons 

of means and proportions, and binary and multiple linear regressions. A discussion of each 

analysis and the related conclusions are outlined. Finally, a summary of the results from the 

statistical tests performed to address the study hypotheses concludes this chapter.  

H1: Association Between SIRS and Sepsis Alerts and Sepsis Mortality 

 Contingency Tables: Sepsis Mortality.  

Contingency tables were created to summarize the relationship between the categorical 

variables of SIRS and sepsis alerts and sepsis mortality. A significance level of 0.05 was used. 

Table 7 displays the frequency distribution of SIRS alerts and sepsis mortality. As shown, 226 of 

the 1901 patient visits with at least one SIRS alert during their stay also died in the hospital due 

to sepsis. This represented 11.9% of the total number of patients with at least one SIRS alert. Of 

those without any SIRS alerts, 14.9% died. The Chi-square statistic (X2(2) = 39.85, p < 

0.00001), a test used to compare the proportion of subjects in each of two groups who have a 

dichotomous outcome, had a p-value less than 0.05. This means there that is a statistically 

significant difference in sepsis mortality between the proportion of patients that had at least one 

SIRS alert that died, versus those that did not.  

Table 8 displays the frequency distribution of sepsis alerts and sepsis mortality. Of the 
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Table 7 

Contingency Table: SIRS Alerts and Sepsis Mortality 

 

 

Sepsis Mortality 

Total No Yes 

SIRS Alerts No Count 7692 
(7786) 
[1.13]  

1669 
(1575) 
[5.59] 

9361 

% of Total 68.3% 14.8% 83.1% 

Yes Count 1675  
(1581) 
[5.57] 

226   
(320) 

[27.55] 

1901 

% of Total 14.9% 2.0% 16.9% 

Total Count 9367 1895 11262 

% of Total 83.2% 16.8% 100.0% 
 
Note. The contingency table above provides the following information:  
the observed cell totals, (the expected cell totals), and [the Chi-square  
statistic for each cell]. The Chi-square statistic (X2(2)) is 39.85. The 
p-value is < 0.00001. The result is significant at p < 0.05. 

 

3290 patient visits with at least one sepsis alert during their stay, 553 experienced sepsis-related 

mortality. This is 4.9% of the total number of patients with at least one sepsis alert. The Chi-

square statistic (X2(2) = 0.0011, p = 0.97) had a p-value greater than 0.05, meaning that there is 

no statistically significant difference between the proportion of patients that did or did not have 

at least one sepsis alert, that died from sepsis. 

Regression Results: Sepsis Mortality . 

Binary logistic regression analyses were conducted to evaluate the changes in sepsis 
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Table 8 

Contingency Table: Sepsis Alerts and Sepsis Mortality 

 

 

Sepsis Mortality 

Total No Yes 

Sepsis Alerts No Count 6630 
(6631) 
[0.00]  

1342 
(1341) 
[0.00] 

7972 

% of Total 58.9% 11.9% 70.8% 

Yes Count 2737 
(2736) 
[0.00] 

  553 
(554) 

[0.00]   

3290 

% of Total 24.3% 4.9% 29.2% 

Total Count 9367 1895 11262 

% of Total 83.2% 16.8% 100.0% 
 
Note. The contingency table above provides the following information: 
the observed cell totals, (the expected cell totals), and [the Chi-square 
statistic for each cell]. The Chi-square statistic (X2(2)) is 0.0011. The  
p-value is 0.97. The result is not significant at p < 0.05. 
 

mortality after employing SIRS and sepsis alerts within the EMR while controlling for medical 

service, age, gender, and ethnicity. A pre-implementation group, which included patients with a 

sepsis diagnosis from the year preceding the alert implementation, was combined with those in 

the post-alert group period that spanned three years, to form the complete cohort (N = 11262). 

The logistic regression results for SIRS alerts and sepsis mortality are presented in Table 

9. For the entire model, the omnibus tests of model coefficients, or Chi-square tests (X2(2) = 

388.64, p < 0.001) had a p-value less than the significance level of 0.05. The Nagelkerke R2 
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result was 0.06, a value indicative of the impact of all of the variables within the model. The 

model explained only 6% of the overall variance in the prediction of sepsis mortality. 

Investigation of the individual associations showed that SIRS alerts (Wald = 19.60, p < 0.001) 

had a statistically significant relationship with sepsis mortality. SIRS alerts had a standardized 

beta coefficient of 0.34 and an odds ratio of 1.41:1. The odds ratio indicates that if one or more 

SIRS alerts was present on a patient, then he or she had 1.41 higher odds of dying due to sepsis-

related complications than a patient who had no alerts. 

Table 9 

Association Between SIRS Alerts and Sepsis Mortality 
 

     B  S.E.     Wald df  Sig.  Odds 
Ratio  

Age 0.03 0.00 265.35 1 0.00* 1.03 

Gender 0.00 0.05    0.01 1 0.92 1.01 

Race 0.10 0.02 35.98 1 0.00* 1.11 

Medical Service 0.00 0.00   0.88 1 0.35 1.00 

SIRS Alerts 0.34 0.08  19.60 1 0.00* 1.41 

Constant -3.96 0.15 743.86 1 0.00* 0.02 

 
Note. X2(2) = 388.64, p < 0.001, Nagelkerke R2 = 0.06, N = 11262 
 
a. Dependent variable: Sepsis Mortality 
b. Covariates: Age, Gender, Race, Medical Service 
c. Independent variable: SIRS Alerts 
*Significant at a level less than or equal to 0.05 

Results for sepsis alerts and sepsis mortality are displayed in Table 10. For the whole 

regression model, the Chi-square tests (X2(2) = 367.94, p < 0.001) had a p-value less than the 

significance level of 0.05. However, the relationship between the sepsis alerts and the prediction  
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Table 10 

Association Between Sepsis Alerts and Sepsis Mortality 
 

     B  S.E.     Wald df  Sig.  Odds 
Ratio  

Age 0.03 0.00    283.50 1 0.00* 1.03 

Gender 0.00 0.05   0.00 1 0.97 1.00 

Race 0.10 0.02 36.94 1 0.00* 1.11 

Medical Service 0.00 0.00   0.35 1 0.55 1.00 

Sepsis Alerts 0.01 0.06   0.60 1 0.81 1.01 

Constant -3.70 0.13    781.98 1 0.00* 0.03 

 
Note. X2(2) = 367.94, p < 0.001, Nagelkerke R2 = 0.05, N = 11262 
 
a. Dependent variable: Sepsis Mortality 
b. Covariates: Age, Gender, Race, Medical Service 
c. Independent variable: Sepsis Alerts 
*Significant at a level less than or equal to 0.05 

of sepsis mortality was not statistically significant (p = 0.81). The Nagelkerke R2 result was 0.05, 

a value denoting the small effect size of the model, all variables included. It explained 5% of the 

overall variance in the prediction of sepsis mortality.  

The results of these logistic regression analyses do not support the first hypothesis that “the 

implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to lower sepsis-

related mortality”. It was demonstrated that the implementation of SIRS alerts in the EMR were 

associated with higher sepsis-related mortality, and sepsis alerts had no relationship to the 

number of sepsis deaths. 

Comparison of Cohorts on Sepsis Mortality. 

 The post-implementation group who received alerts only (N = 4524) was compared with 
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the pre-implementation group (N = 1551) on the dependent variable sepsis mortality. Table 11 

shows that 21.1% of those in the pre-implementation group that were diagnosed with sepsis died 

in the hospital, and 78.9% survived and were discharged. In contrast, of those in the post-

implementation group (Table 12), 14.4% experienced sepsis-related inpatient mortality, and 

85.6% were discharged after having their sepsis treated. The Chi-square statistic (X2(2) = 

516.46, p = 0.000) for the pre-implementation group had a p-value of less than 0.05, as did the 

post-implementation group (X2(2) = 2291.87, p = 0.000), indicating that there was a statistically 

significant difference between the observed and expected values for both groups. Additionally, 

according to the two-sample t-test (p < 0.001), there was a statistically significant difference 

between the pre-implementation and alerts-only post-implementation cohort population means 

for sepsis-related mortality. These results differ from those of the logistic regression for the first 

hypothesis for SIRS alerts, in that there was slightly higher sepsis-related mortality seen post-

implementation of the SIRS alerts. No significant result for the post-implementation cohort was 

obtained for sepsis alerts via logistic regression. These differences might be explained by the fact 

that the pre-implementation cohort consisted only of patient visits with a recorded sepsis 

diagnosis on the chart. As a recorded sepsis diagnosis was also one of the three selection criteria 

for the post-implementation group, the whole post-implementation cohort could not be used as a 

valid basis for comparison to the pre-implementation group.  

H1: Association Between SIRS and Sepsis Alerts and Length of Stay 

Regression Results: Length of Stay. 

Multiple linear regression analyses were conducted to estimate the changes in length of  

stay after employing SIRS and sepsis alerts within the EMR, respectively, while controlling for 

medical service, age, gender, and ethnicity. A pre-implementation group, which included patients 
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Table 11 

Sepsis-Related Mortality – Pre-Implementation Group 

   Frequency   Percent   Cumulative Percent 

Valid No 1223 78.9  78.9 

Yes 328 21.1  100.0 

Total 1551 100.0   

 
Note. The Chi-square statistic (X2(2)) is 516.46. The p-value is = 0.000.  
The result is significant at p < 0.05. 
 
Table 12 

Sepsis-Related Mortality – Post-Implementation Group 

   Frequency    Percent   Cumulative Percent 

Valid No 3872 85.6  85.6 

Yes 652 14.4  100.0 

Total 4524 100.0   

 
Note. The Chi-square statistic (X2(2)) is 2291.87. The p-value is = 0.000.  
The result is significant at p < 0.05. This group includes  
post-implementation patients who received a SIRS or sepsis alert, or both. 
 
*The two-sample t-test result between the pre-implementation (Table 11)  
and post-implementation groups (Table 12) on Yes and No is p <0.001.  
The result is significant at p < 0.05.   
 

with a sepsis diagnosis from the year preceding the alert implementation, was combined with 

those in the post-alert group period that spanned three years, to form the complete cohort (N = 

11262). 
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Multiple linear regression was chosen because the dependent variable, length of stay, is a 

continuous variable. It represents the total number of days that the patient spent in the hospital 

during their inpatient visit. The independent variables, SIRS and sepsis alerts, are categorical, 

classified as being either present (1) or absent (0) during the patient visit. 

The multiple linear regression results for SIRS alerts and length of stay are presented in 

Table 13. The analysis revealed statistical significance (F(5, 11256) = 35.27, p < 0.001) for the 

entire model. The R-square value (R2 = 0.02) equated to a low level, indicating a small combined 

effect size by the independent variables on the dependent variable. SIRS alerts (B = 5.40, t 

[11262] = 11.25, p < 0.001) had a statistically significant relationship with the length of stay. 

Investigation of the beta coefficient indicated that the presence of SIRS alerts was associated 

with in a longer length of stay in days. When at least one SIRS alert was present per patient visit, 

the length of stay was 5.40 days longer, on average, then when no SIRS alerts were present. 

Results for sepsis alerts and length of stay are displayed in Table 14. Significant regression 

analysis results (F(6, 11256) = 38.27, p < 0.001) for the whole model are shown. The R-square 

value (R2 = 0.02) again equated to a low level, indicating a small combined effect size by the 

independent variables on the dependent variable. The sepsis alert results (B = 4.66, t [11262] = 

11.89, p < 0.001) were statistically significant. The beta coefficient indicates that employing 

individual sepsis alerts had a positive association with the length of stay in days. When at least 

one sepsis alert was present per patient visit, the length of stay was 4.66 days longer, on average,  

compared to those that had no sepsis alert. 

The results of the multiple linear regression analyses did not support the first hypothesis 

that “the implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to lower 

average length of stay”. It was demonstrated that the implementation of SIRS and sepsis alerts in 
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Table 13 

Association Between SIRS Alerts and Length of Stay 

Model Unstandardized 
Coefficients 

Standardized   
Coefficients 

      t       Sig. 

  B Std.  
Error 

 Beta 
 

(Constant) 10.81 0.84   12.92 0.00* 

Age 0.01 0.01 0.00 0.40       0.69 

Gender 1.50 0.36 0.04 4.17        0.00* 

Race 0.67 0.12 0.05 5.76       0.00* 

Medical Service -0.02 0.01 -0.01 -1.35        0.18 

SIRS Alerts 5.40 0.48 0.11 11.25 0.00* 

 
Note. F(5, 11256) = 35.27, p < 0.001, R-Square (R2) = 0.02, N = 11262 
 
a. Dependent Variable: Length of Stay in days 
b. Covariates: Medical Service, Gender, Age, Race 
c. Independent Variable: SIRS Alerts 
*Significant at a level less than or equal to 0.05 

the EMR was associated with a higher average length of stay.  

Comparison of Cohorts on Length of Stay. 

 The post-implementation group who received any alerts only (N = 4524) was compared  

with the entire pre-implementation group (N = 1551) on the dependent variable length of stay to 

see whether support for the first hypothesis would be seen. As shown in Table 15, there was no 

statistically significantly difference (p = 0.081) in the mean length of stay in days between the 

pre-implementation group (16.39) and the post-implementation group (17.59). As with the cohort 

comparison of sepsis mortality on population means, the difference in results from those of the 



www.manaraa.com

 

49 
 

Table 14 

Association Between Sepsis Alerts and Length of Stay 

Model Unstandardized 
Coefficients 

Standardized   
Coefficients 

      t       Sig. 

  B Std.  
Error 

 Beta 
 

(Constant) 11.13 0.83   13.39 0.00* 

Age -0.01 0.11 -0.01 -0.58       0.57 

Gender 1.45 0.36 0.04 4.03        0.00* 

Race 0.61 0.12 0.05 5.23       0.00* 

Medical Service -0.02 0.01 -0.01 -1.08        0.28 

Sepsis Alerts 4.66 0.40 0.11 11.89 0.00* 

 
Note. F(6, 11256) = 38.27, p < 0.001, R-Square (R2) = 0.02, N = 11262 
 
a. Dependent Variable: Length of Stay in days 
b. Covariates: Medical Service, Gender, Age, Race 
c. Independent Variable: Sepsis Alerts 
*Significant at a level less than or equal to 0.05 

 

multiple linear regressions run on length of stay may be due to the nature of the comparison 

groups. The pre-implementation cohort consisted only of patient visits with a recorded sepsis 

diagnosis on the chart. As a recorded sepsis diagnosis was also one of the three selection criteria 

for the post-implementation group, the whole post-implementation cohort could not be used as a 

valid basis for comparison to the pre-implementation group. 

H2: Association Between SIRS and Sepsis Alerts and Sepsis Initial Resuscitation 

PowerPlan 

Regression Results: Sepsis Initial Resuscitation PowerPlan. 
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Table 15 

Comparison of Cohorts on Length of Stay in Days 

 
Pre-Implementation 

Group 
Post-Implementation 

Group 

 N  Valid 1551     4524 

Missing                        0  0 

Mean 16.39         17.59 

Std. Error of Mean 0.52          0.33 

Median 10.00        11.00 

Mode 3.00         4.00 

Std. Deviation 20.38        22.49 

Variance 415.44      506.67 

Range 284.00      377.00 

Minimum 0.00          0.00 

Maximum 284.00      377.00 

 
Note. The two-sample t-test result between groups is p = 0.081.  
The result is not significant at p < 0.05.  
 

Multiple linear regression analyses were conducted to assess changes in the ordering of the 

Sepsis Initial Resuscitation PowerPlan after employing SIRS and sepsis alerts within the EMR, 

respectively, while controlling for medical service, age, gender, and ethnicity. A pre-

implementation group, which included patients with a sepsis diagnosis from the year preceding 

the alert implementation, was combined with those in the post-alert group period that spanned 
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three years, to form the complete cohort (N = 11262). 

Multiple linear regression was chosen because the dependent variable, Sepsis PowerPlan 

use, is a continuous variable that represents the number of Sepsis Initial Resuscitation 

PowerPlans ordered on the chart of a patient during their visit. The original variable was log 

transformed from discrete to continuous in order to be appropriate for the analysis.  The 

independent variables, SIRS and sepsis alerts, are categorical, classified as being either present 

(1) or absent (0) during the patient visit.  

The multiple linear regression results for SIRS alerts and Sepsis PowerPlan use are 

presented in Table 16. The analysis for the whole model was statistically significant (F(6, 11256) 

= 1.70, p  = 0.03). The R-square value (R2 = 0.001) indicated a low effect size by the independent 

variables on the dependent variable. The SIRS alerts (B = -0.01, t [11262] = -2.15, p = 0.03) had 

a statistically significant relationship with PowerPlan use, according to their p-value. However, 

the presence of SIRS alerts was associated with fewer PowerPlans being ordered on the patient 

charts. Due to the initial logarithmic transformation of the PowerPlan variable, the exponentiated 

regression coefficient value (exp(B) = -1.01), as the geometric mean of the original variable, 

must be used for interpretation, as exponentiation is the inverse of the logarithmic function. The 

negative beta coefficient suggests an inverse relationship between the variables, meaning that 

when at least one SIRS alert was present per patient visit, 1.01 fewer PowerPlans were ordered. 

Results for sepsis alerts and Sepsis PowerPlan use are shown in Table 17. The regression 

analysis displayed statistical significance (F(6, 11256) = 2.52, p = 0.03) for the entire model. 

Sepsis alerts (B = -0.01, t [11262] = -2.96, p < 0.001), like SIRS alerts, had a statistically 

significant relationship with PowerPlan use. As was the case with SIRS alerts, the presence of 

sepsis alerts was associated with fewer PowerPlans being ordered on the patient charts. The beta 
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Table 16 

Association Between SIRS Alerts and Sepsis Initial Resuscitation PowerPlan 

Model Unstandardized 
Coefficients 

Standardized   
Coefficients 

      t       Sig. 

  B Std.  
Error 

 Beta 

   (Constant) 0.02 0.01   3.34         0.00* 

Age 0.00 0.00 0.00 0.24       0.81 

Gender 0.00 0.00 0.00 -0.12       0.91 

Race 0.00 0.00 -0.01 -0.72       0.47 

Medical Service 0.00 0.00 -0.02 -1.58       0.12 

SIRS Alerts -0.01 0.00 -0.02 -2.15         0.03* 

 
Note. F(5, 11256) = 1.70, p =0.03, R-Square (R2) = 0.001, N = 11262 
 
a. Dependent Variable: Sepsis Initial Resuscitation PowerPlan Ordered 
b. Covariates: Medical Service, Gender, Age, Race 
c. Independent Variable: SIRS Alerts 
*Significant at a level less than or equal to 0.05 

coefficient value was again negative, and exp(B) = -1.01, meaning that when there was at least 

one sepsis alert present on a patient visit, 1.01 fewer PowerPlans were ordered. 

The results of these multiple linear regression analyses did not support the second hypothesis that 

“the implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to more 

ordering of the Sepsis Initial Resuscitation PowerPlan”. It was demonstrated that the 

implementation of SIRS and sepsis alerts in the EMR was correlated with fewer PowerPlans 

being ordered by physicians. 

Comparison of Cohorts on Sepsis Initial Resuscitation PowerPlan. 
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Table 17 

Association Between Sepsis Alerts and Sepsis Initial Resuscitation PowerPlan 

Model Unstandardized 
Coefficients 

Standardized   
Coefficients 

      t       Sig. 

  B Std.  
Error 

 Beta 

   (Constant) 0.02 0.01   3.38 0.00* 

Age 0.00 0.00 0.00 0.40        0.69 

Gender 0.00 0.00 0.00 -0.09        0.93 

Race 0.00 0.00 -0.01 -0.62        0.53 

Medical Service 0.00 0.00 -0.02 -1.60        0.11 

Sepsis Alerts -0.01 0.00 -0.03 -2.96       0.00* 

 
Note. F(5, 11256) = 2.52, p =0.03, R-Square (R2) = 0.001, N = 11262 
 
a. Dependent Variable: Sepsis Initial Resuscitation PowerPlan Ordered 
b. Covariates: Medical Service, Gender, Age, Race 
c. Independent Variable: Sepsis Alerts 
*Significant at a level less than or equal to 0.05 

The post-implementation group who received any alerts only (N = 4524) was compared 

with the entire pre-implementation group (N = 1551) on the dependent variable Sepsis 

PowerPlan to see whether support for the second hypothesis would be seen. As shown in Table 

18, there was a statistically significantly result for the z-score test, meaning that there is a 

difference between the two population proportions. For the pre-implementation group, the 

proportion is 0.014, and for the post-implementation group, it is 0.007. These results are similar 

to the multiple linear regression analysis run on the Sepsis PowerPlan variable, as there were a 

lower number of PowerPlans ordered post-alert implementation. As with previous cohort 
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Table 18 

Comparison of Cohorts on Sepsis PowerPlan Ordered 

 

Pre-
Implementation 

Group 

Post-
Implementation 

Group 

Total number of 
PowerPlans 
ordered 

    22     32 

Sample Size 1551   4524 

 
Note. The z-score for two population proportions is 2.57.  
The p-value is 0.005. The result is significant at p < 0.05.  
 

comparisons, the pre-implementation cohort consisted only of patient visits with a recorded 

sepsis diagnosis on the chart. As a recorded sepsis diagnosis was also one of the three selection 

criteria for the post-implementation group, the whole post-implementation cohort could not be 

used as a valid basis for comparison to the pre-implementation group. 

H2: Association Between SIRS and Sepsis Alerts and Sepsis Diagnosis 

Probability Tables: Sepsis Diagnosis. 

First, Table 19 shows that the model using SIRS alerts predicted that 85.0 %, or 920 of 

intervention patient visits, would not have a sepsis diagnosis. It also predicted that 17.6%, or 144 

intervention patient visits would have a sepsis diagnosis. Cases were classified as true events if 

the predicted probability equaled or exceeded 0.50. The overall percentage of correct Yes and No 

predictions was 56.0%. 

Next, Table 20 displays the probabilities using sepsis alerts. It correctly predicted that 

94.2%, or 1784 intervention patients would not be diagnosed with sepsis. It also predicted that 
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Table 19 

Probability Table: SIRS Alerts and Sepsis Diagnosis 

 Observed         Predicted 

  Sepsis Diagnosis Percentage 
Correct 

 Total No Yes 

 

Sepsis Diagnosis  
No 1082 920 162 85.0% 

Yes 819 675 144  17.6% 

Overall Percentage          1901          1595            306 56.0% 

 
Note. The classification cut-off value is 0.50.  
N = 1901, post-implementation sample with SIRS alerts. 
 
Table 20 

Probability Table: Sepsis Alerts and Sepsis Diagnosis 

 Observed         Predicted 

  Sepsis Diagnosis Percentage 
Correct 

 Total No Yes 

 

Sepsis Diagnosis  
No  1893 1784 109 94.2% 

Yes 1397 1290 107  7.7% 

Overall Percentage          3290          3074            216 57.5% 

 
Note. The classification cut-off value is 0.50. 
N = 3290, post-implementation sample with sepsis alerts. 
 

7.7%, or 107 intervention patients would be diagnosed with sepsis. The classification cut-off 

value again used was 0.50. The overall percentage of correct Yes and No predictions was 57.5%. 
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Regression Results: Sepsis Diagnosis. 

Binary logistic regression analyses were conducted to evaluate the changes in sepsis 

diagnosis status after employing SIRS and sepsis alerts within the EMR, respectively, while  

controlling for medical service, age, gender, and ethnicity. The pre-implementation group was 

not included as it was comprised only of patient visits with a recorded sepsis diagnosis on the 

chart. As a recorded sepsis diagnosis was also one of the three selection criteria for the post-

implementation group, the whole post-implementation cohort could not be used as a valid basis 

for comparison to the pre-implementation group. Therefore, the analysis for SIRS alerts only 

included patients who had received one or more SIRS alerts (N = 1901), and the analysis for 

sepsis alerts only included patients who had received one or more sepsis alerts (N = 3290). 

Logistic regression was chosen since the dependent variable of sepsis diagnosis is a binary 

categorical variable with the two possible responses of Yes (1) or No (0). In these two analyses 

only, the independent variables, SIRS and sepsis alerts, are continuous. They are measured here 

as a count of the number of unique alerts per patient visit. Representing the variable as binary in 

this instance would have characterized it as a constant, i.e. all patients would have had a Yes (1) 

value. Therefore, it would have been a static value in the model, and not a meaningful variable.  

The logistic regression results for SIRS alerts and sepsis diagnosis are presented in Table 

21. For the entire model, the omnibus tests of model coefficients, or Chi-square tests (X2(2) = 

30.23, p < 0.001) had a p-value less than the significance level of 0.05. The Nagelkerke R2 result 

was 0.05, a value indicative of the impact of all of the variables within the model. It explained 

only 5% of the overall variance in the prediction of sepsis diagnosis. Beta coefficients and odds 

ratios were used to determine the individual associations. SIRS alerts (Wald = 25.14, p < 0.001) 

had a statistically significant relationship with sepsis diagnosis. SIRS alerts had a beta coefficient 
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Table 21 

Association Between SIRS Alerts and Sepsis Diagnosis 
 

     B  S.E.     Wald df  Sig.  Odds 
Ratio  

Age 0.01 0.00 21.49 1 0.00* 1.01 

Gender 0.07 0.01   0.56 1 0.46 1.07 

Race -0.03 0.03   0.73 1 0.40 0.97 

Medical Service -0.01 0.00 14.30 1 0.00* 0.99 

Number of SIRS alerts 0.20 0.04 25.14 1 0.00* 1.22 

Constant -0.85 0.22 14.78 1 0.00* 0.43 

 
Note. X2(2) = 30.23, p < 0.001, Nagelkerke R2 = 0.05, N = 1901 
 
a. Dependent variable: Sepsis Diagnosis 
b. Covariates: Age, Gender, Race, Medical Service 
c. Independent variable: SIRS Alerts 
*Significant at a level less than or equal to 0.05 

of 0.20 and an odds ratio of 1.22:1. This indicates that for each additional SIRS alert present on a 

patient, he or she had 1.22 higher odds of having had a sepsis diagnosis recorded in the EMR 

than those with one fewer SIRS alert. 

Results for sepsis alerts are presented in Table 22. For the whole regression model, the 

Chi-square tests (X2(2) = 51.79, p < 0.001) had a significant p-value of less than 0.05. The 

Nagelkerke R2 result was 0.04, a value denoting the small effect size of the model, all variables 

included. It explained 4% of the overall variance in the prediction of sepsis diagnosis. Sepsis 

alerts (Wald = 38.13, p < 0.001) had a statistically significant relationship with sepsis diagnosis. 

Sepsis alerts had a beta coefficient of 0.27 and an odds ratio of 1.31:1. This indicates that per 
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Table 22 

Association Between Sepsis Alerts and Sepsis Diagnosis 
 

     B  S.E.     Wald df  Sig.  Odds 
Ratio  

Age 0.00 0.00  9.37 1 0.00* 1.01 

Gender -0.02 0.07   0.10 1 0.75 0.98 

Race -0.08 0.02 12.46 1 0.00* 0.92 

Medical Service -.010 0.00 14.82 1 0.00* 0.99 

Sepsis Alerts 0.27 0.04 38.13 1 0.00* 1.31 

Constant -0.41 0.17   5.62 1 0.02 0.67 

 
Note. X2(2) = 51.79, p < 0.001, Nagelkerke R2 = 0.04, N = 3290 
 
a. Dependent variable: Sepsis Diagnosis 
b. Covariates: Age, Gender, Race, Medical Service 
c. Independent Variable: SIRS Alerts 

 

each additional sepsis alert present on a patient, he or she had 1.31 higher odds of having had a 

sepsis diagnosis recorded compared to those with one fewer sepsis alert. 

The results of these logistic regression analyses fully support the second hypothesis that 

“the implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to more 

frequent diagnoses of sepsis”. It was demonstrated that the presence of additional SIRS and 

sepsis alerts in the post-implementation group was associated with more sepsis diagnoses being 

recorded by physicians. 

Chapter Summary 

The purpose of this study was to examine the impact of implementing cloud-based SIRS 

and sepsis alerts in the Cerner EMR. This chapter enumerated the results of each hypothesis. The 
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dependent variables tested, using logistic regression and multiple linear regression, included 

sepsis-related mortality, length of stay, sepsis diagnosis, and the ordering of the Sepsis Initial 

Resuscitation PowerPlan. The pre-implementation group was also compared to the post-

implementation group on the dependent variables of length of stay and sepsis-related mortality. 

The interpretation of and key findings of these results, along with limitations and 

recommendations for future research, will be discussed in Chapter 5. 
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Chapter 5: Conclusion 

 

Overview 

  This chapter summarizes and reviews the key findings and implications of the study. 

Also discussed will be limitations and recommendations for future research in the domain of 

CDS sepsis alerting. The primary purpose of this study was to estimate the impact of 

implementing real-time, cloud-based SIRS and sepsis alerts on inpatient sepsis-related mortality, 

length of stay, ordering of the Sepsis Initial Resuscitation PowerPlan, and sepsis diagnosis 

coding. As a process and patient outcomes evaluation of a unique CDS alerting tool, it was 

employed to improve recognition and care of those patients at risk for sepsis. A sample of 11,262 

unique patient visits, along with the total number of occurrences of SIRS and sepsis alerts, were 

retrieved from a clinical data warehouse for the analysis. Two main hypotheses were examined. 

How these hypotheses were met and a discussion of related key results follows. 

Hypothesis Results and Discussion 

H1: The implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to 

lower sepsis-related mortality and lower average length of stay. 

The first major finding of this research is that patients having one or more SIRS alerts 

were correlated with having 1.41 higher odds of experiencing sepsis-related mortality than those 

with no alerts. Due to the post-implementation cohort patients being alerted on prior to the onset 

of sepsis, it was expected that mortality would be lower. However, Berger et al. (2010) had 
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previously found that the implementation of a computerized alert based on two SIRS criteria had 

left the mortality rate unchanged. A possibility that was not controlled for in this study is that 

patient mortality could be due to conditions unrelated to SIRS or sepsis. Per Long, Koyfman, and 

Bright (2015), there are several conditions that meet the criteria for SIRS and can therefore 

mimic sepsis. These include pulmonary embolism, anaphylaxis, colitis, and vasculitis, among 

others. If they are not ruled out, higher mortality rates may result.  

 Secondly, it was found that the presence of one or more sepsis alerts did not have a 

statistically significant impact on sepsis-related mortality in-house. This is in contrast to the 

reduced mortality rate found in previous sepsis CDS alert studies by Zubrow et al. (2008), 

Powers and Burchell (2010), Moore et al. (2010), and Vogel (2014). As the post-implementation 

cohort consisted of patient visits, it might be deduced that multiple visits by the same patients 

over the three-year study period ultimately ended in their death, as the outcomes tend to 

deteriorate with each admission for patients that have had already sepsis and survived it (Yende 

& Angus, 2007). There were stricter physiologic criteria used to define sepsis in this study 

algorithm, compared with all the other studies cited in the literature review that use the more 

liberal criteria as outlined by the Sepsis Definitions Task Force (Singer et al., 2016), that would 

make the results of this study less comparable to those that used the stricter criteria.  It was also 

not clear in those studies as to how mortality rate was assessed, or over what period of time. 

Again, this makes it more difficult to correlate the results of this study, which only assessed 

sepsis mortality in-house, with others. Patients who were discharged, after being treated for 

sepsis, may have had either a higher or lower survival rate due to delayed sequelae. Fewer than 

half of severe sepsis patients are still alive within one year, as the subsequent mortality rate for 

these patients is high (Yende & Angus, 2007). Due to post-discharge information not being able 



www.manaraa.com

 

62 
 

to be obtained for this study, in terms of subsequent health status or mortality, these factors could 

not be accounted for and therefore not measured. Despite adjusting for acuity with the medical 

service control variable in this study, the most clinically severe patients may have tended to have 

more SIRS or sepsis alerts, so any improvement due to the presence of the alerts may have been 

skewed lower by the deaths of those in the worst condition. 

Support for H1, however, was found via a comparison of population means between the 

pre-implementation cohort (N = 1551) and the post-implementation cohort with one or more 

SIRS or sepsis alerts, or both (N = 4524), for sepsis-related mortality. Inpatient deaths due to 

sepsis were 6.7% lower in the post-implementation group. This difference between this result 

and those of the regression analysis, where SIRS alerts were associated with a slightly higher 

sepsis-related mortality, might be explained due to the post-implementation group only being 

comprised of those who received one or more SIRS or sepsis alerts, or both (N = 4524), and not 

the combined regression analysis sample (N = 11262) made up of patient visits with one or more 

SIRS and sepsis alerts, those diagnosed with sepsis, and those with a Sepsis PowerPlan ordered. 

The comparison of population means results could indicate that the alerts were more impactful 

on sepsis mortality than indicated by the regression results, as patients in the combined sample 

that were diagnosed with sepsis by a clinician and not alerted on may not have met the officially 

defined VCU Health System criteria for SIRS and sepsis. This could mean that the metrics used 

by clinicians to identify sepsis differed from those of the alerts, and if the patient was not truly 

septic, then sepsis-related mortality might not reasonably follow.  

 The next major finding pertains to the second part of H1, the impact of the alerts on 

length of stay. Results indicated that both SIRS and sepsis alerts were associated with a higher 

average length of stay, not a lower one. This is similar to the results obtained by Bailey et al. 
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(2013) at Barnes-Jewish hospital in St. Louis, where the median length of stay was found to be 

statistically longer for pager-alerted patients, at 7.01 vs. 2.94 days for non-alerted patients (p < 

0.001). As so at Barnes-Jewish, it could be postulated that patients who deteriorated clinically 

over time generated more alerts, and may have accounted for these higher average lengths of 

stay. 

It had been originally theorized that alerts would reduce the overall length of stay due to 

more timely intervention and evidenced-based treatment, preventing sepsis from occurring, with 

the patient discharged sooner than if they became septic. However, even if the patient’s sepsis 

has been managed with antibiotic therapy (Howell & Davis, 2017), they may still need more 

time in the hospital to recover than a non-septic patient. Likewise, the patients with the most 

sepsis alerts might well remain alive and in an inpatient status longer due to successful 

interventions. Other factors to consider that might impact the length of stay, in spite of the 

medical service variable being controlled for, include varying aspects of the patient population in 

terms of admission diagnosis and socioeconomic status, a different mix of illnesses, and changes 

in medication protocols, some of which may be less effective for the treatment of septic patients. 

Medical service can change during an inpatient stay, and is not directly correlated to specific 

diseases or patient types as defined by VCU Health System. For this study, the medical service 

assigned upon admission was used. Using medical service to represent clinical complexity may 

not have adequately controlled for patient acuity. If a score or index had been used to calculate 

clinical complexity in this study and controlled for, the overall results may have been more in 

line with the projected hypotheses. 

As with sepsis-related mortality, the pre-implementation cohort (N = 1551) was 

compared to the alerts-only post-implementation cohort (N = 4524) by a comparison of means, 
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for length of stay. The mean length of stay in days was 1.2 days longer for those in the post-

implementation group than those in the sepsis-diagnosed pre-implementation group, which was 

not a statistically significant result. The difference in results between this analysis and that of the 

regression on length of stay may again be due to the use of the combined samples (N = 11262) 

for the latter. 

H2: The implementation of cloud-based SIRS and sepsis alerts in the EMR will lead to 

more ordering of the Sepsis Initial Resuscitation PowerPlan and more recording of 

sepsis diagnoses. 

The major finding with regard to the initial part of H2 is that SIRS and sepsis alerts were 

associated with fewer orders of the Sepsis Initial Resuscitation PowerPlan. This did not lend 

support to the second hypothesis, suggesting that SIRS and sepsis alerts may not sufficiently spur 

physicians to order more Sepsis PowerPlans. Based on my observations at VCU Health System, 

it could be surmised that while they may have indeed heeded the instructions provided in the 

alerts when prompted, physicians still preferred to choose their own mix of orders, placing 

individual orders for fluids, medications, and lab work outside the pre-configured Sepsis 

PowerPlan. They might also have realized, prior to an alert appearing, that the patient had SIRS 

or was septic. Within the Cerner EMR, physicians also have the option to save a customized 

version of a plan, a behavior frequently associated with PowerPlans, but the study was not able 

to take this into account due to the unobtainable nature of the customized PowerPlan data. A 

method for tracking physician-customized PowerPlans might therefore yield a more accurate 

view of how frequently they are ordered. Another possibility is that they did not know how or 

where to locate the Sepsis PowerPlan. In that case, better instructions, or a link to the PowerPlan 
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itself, could have been included in the alert text body. Sepsis PowerPlans may also need to be 

more widely promoted at VCU Health System as a standard of care. 

Prior to alert implementation, there were very few patients on whom there was a standard 

Sepsis PowerPlan ordered, so it already suffered from a low usage rate. Only 22 unique patient 

visits in the pre-implementation group (N = 1551) and 32 patient visits in the alerts-only post-

implementation group (N = 4524) had Sepsis PowerPlans ordered. It could be expected that this 

trend might continue, particularly if individually placed orders or customized PowerPlans were 

continuing to be used, as previously theorized. PowerPlans may also not have been ordered if the 

alerts were ignored due to alert fatigue (Phansalkar et al., 2010). Alert fatigue is not only a factor 

due to multiple SIRS or sepsis alerts on a patient being possible throughout their stay, but the 

coexistence of many other types of interruptive, real-time alerts employed in the EMR at VCU 

Health System.  

Additionally, a global quality improvement study conducted by Rhodes et al. (2015) 

determined that SSC-recommended order set bundle (akin to PowerPlans) compliance was 

associated with a 40% reduction in the hospital-associated mortality rate for the 3-hour bundle 

and a 36% reduction for the 6-hour bundle. Hence, low compliance in ordering Sepsis 

PowerPlans in this study may have also contributed somewhat to the lack of reduction in the 

mortality rate (first half of H1). 

The pre-implementation cohort (N = 1551) was also compared to the alerts-only post-

implementation cohort (N = 4524) via a comparison of population proportions, for the Sepsis 

PowerPlan variable. There was a statistically significant result, indicating that there was a 

difference between the two population means, with the post-implementation group having a 

proportionally lower number of PowerPlans ordered. 
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Relating to the second half of H2, statistically significant results indicated that the 

implementation of both cloud-based SIRS and sepsis alerts was associated with more diagnoses 

of sepsis. This suggests that alerts could have contributed to the higher amount of sepsis 

diagnosis codes being documented. However, the recording of an active diagnosis on the 

patient’s chart is a core measure of Stage 1 of Meaningful Use, which was implemented at VCU 

Health System in 2012, and could also be responsible for the increased recording of their 

diagnoses.  

Study Limitations 

There are several possible limitations to this study. The pre-implementation group used 

could only be identified by the presence of a recorded sepsis diagnosis on the patient’s chart, 

which may have made it not as suitable as a basis for comparison to the post-implementation 

group that included all patients diagnosed with sepsis as well as those who had SIRS and sepsis 

alerts or a Sepsis PowerPlan ordered, even if no sepsis diagnosis was present in the EMR. Prior 

to the implementation of the alerts, this was ascertained to be the best way to identify septic 

patients. As all data were extracted from a data warehouse, order set bundles equivalent to a 

Sepsis PowerPlan, such as those customized and saved by individual physicians, were not able to 

be identified and counted. This would have required individual chart reviews, which were not 

feasible given the size of the study cohort. Additionally, use of the control variable medical 

service might not have been an exact substitute for the patient’s clinical acuity, but it was the 

closest fit based on the data available. VCU Health System also serves a large uninsured, 

indigent population, and this may have influenced alerting outcomes due to a prevalence of 

generally unhealthier patients, particularly if clinical complexity was not adequately controlled 
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for. Other academic medical centers and hospitals may have different patient populations, 

depending on the areas they serve. 

Also of note, the Cerner algorithm used by VCU Health System employs slightly more 

acute physiologic criteria for sepsis than the conventional standard. The qualifying heart rate 

(HR) is greater than 95 versus 90, the respiratory rate is greater than 22 versus 20, and three of 

four SIRS criteria or two of four with one indicator of organ dysfunction is used rather than two 

or more. (Kaplan & Pinksy, 2011). Perhaps due to these refinements, Erlichman, Trach, Patel, 

Maheshwari, and Seckel (2014) found that the Cerner sepsis detection algorithm had a positive 

predictive value for sepsis only slightly higher than that of its SIRS criteria. Estimations of 

sensitivity and specificity of the Cerner algorithm across multiple geographic regions and facility 

types were found to be 83% and 92%, respectively (Amland & Hahn-Cover, 2016). Further 

adjustments to the algorithm are always being made, and may bring it more in line with 

nationally recommended standards. Implications based on the more stringent criteria used in this 

study may therefore be more pertinent to other hospitals that use the Cerner sepsis algorithm for 

SIRS and sepsis alerting, than those that use an algorithm from another vendor, or one that is 

custom-developed. Hospitals that use the more liberal nationally-recommended criteria may not 

benefit directly from the results of this study, while those that use the stricter criteria may see a 

higher number of sepsis diagnoses being made, as was found here. 

False-positive alerts may happen on occasion, and false negatives will result in no 

alerting, with the attendant risk of not realizing the need for rapid intervention. False-positive 

results can also lead to alert fatigue (Despins, 2017). Clinicians are responsible for properly 

assessing the patient in a timely manner once an alert is generated. If the alerts are not taken as 

seriously by clinical staff due to alert fatigue, they may be less likely to take the next logical 
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intervention step, such as calling a physician or rechecking vital signs (Bailey et al., 2013). 

Although unlikely, if any vital signs or laboratory tests have been entered or resulted incorrectly, 

or have changed within a short period of time, then the alert may or may not be warranted. This 

could have diluted the impact of the alerts. False-positive alerts, false-negative alerts, and alert 

fatigue might have led to delays in the recording of sepsis diagnoses or ordering of PowerPlans, 

or assured that they never occurred at all, due to inaccurate information or a lack thereof. With 

the data obtained for this study, it was not possible to estimate the impact of those erroneous 

alerts or alert fatigue. The influence of any or all of these limitations should be considered as 

they pertain to the conclusions, with the pre- and post-implementation cohort differences, 

inability to accurately assess the number of PowerPlan orders, and stricter alert criteria of the 

study algorithm being the most salient. 

Implications 

 Adopting CDS alerting technology to identify sepsis risk sooner than by manual 

observation, by alleviating some of the weight on staff, may engender better patient outcomes by 

allowing clinicians to prioritize care of septic patients. A patient being diagnosed with SIRS or 

sepsis via an alert sooner can be treated more quickly. Clinician awareness and responsiveness to 

the alerts themselves may increase if alert fatigue is mitigated by better alert design. More 

adherence to alert advice may also lead to enhanced patient outcomes, particularly for sepsis-

related mortality. Healthcare systems could potentially consider adding this technology as part of 

an evidence-based medicine protocol for ameliorating mortality, as there is preliminary evidence 

from this study that more sepsis diagnoses are made as a result of alert adoption. Hospitals also 

need to be aware that any technology adds additional risk, so it needs to be considered and 

implemented carefully in light of mixed results from not only this study, but many others here 
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cited from the literature. This research suggests that clinicians and clinical informaticists can 

therefore consider the implementation of cloud-based SIRS and sepsis alerts if they want to 

capture more sepsis diagnoses. 

As supported by not only this study, but several cited in the literature review, alerts 

geared toward sepsis-related interventions demonstrate varying levels of success in increasing 

diagnostic awareness of sepsis or reducing sepsis-related mortality and average length of stay, 

their effectiveness dependent upon specific physiologic parameters, clinician notification 

methods, and venues in which they are employed. Further study of specific patient populations in 

multiple healthcare setting types, with stratification for high-risk comorbidities and improved 

alerting technology is recommended for fostering increased understanding of how to best use 

CDS for lightening the burden of sepsis-related mortality. Despite hopes that targeted healthcare 

IT applications such as CDS would lead to improved patient outcomes through more immediate 

syndrome recognition, rapid intervention, and treatment standardization (Brokel et al., 2011), 

particularly in terms of reduced length of stay and lower mortality rates (Berner, 2009), the 

promise has yet to be fully realized.  

Future Research Recommendations 

This study looks at all adult inpatients, so it could alternatively explore specific 

chronically ill patient subpopulations, such as those in ICUs. Those patients tend to have a higher 

incidence of sepsis, along with several comorbidities, thus a comorbidity index might be used as 

a control variable. This could help determine whether to adjust alerting criteria to be more in line 

with Surviving Sepsis Campaign (SSC)-recommended reference ranges for vital signs and 

laboratory results, in order to gauge alert effectiveness in reducing mortality in certain high-risk 

populations, as the expected reduction in sepsis related mortality was not seen in the overall 
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patient population. Pediatric and elderly patient populations, who are more vulnerable to sepsis 

post-infection, might also be examined in order to see if the more stringent criteria in the alerts 

results in lower sepsis-related mortality (Angus et al., 2001). Comparisons between medical 

services, such as general medical and surgery, might also be instructive regarding sepsis 

mortality rates, due to the varying nature of patient makeup and treatments for sepsis. Patients 

diagnosed with sepsis could also be tracked longitudinally, post-discharge, in order to obtain 

more accurate mortality rates, as those that expire shortly after discharge due to sepsis are not 

captured and counted in inpatient studies. Measuring other literature-supported variables may 

also provide more insight into the impact of the alerts, such as time to antibiotic treatment 

(Rosenqvist, et al., 2017), factors influencing practitioner performance (Garg et al., 2005), and 

cost effectiveness (Calvert et al., 2017). 

Gaieski, Edwards, Kallan, and Carr (2013) discovered that national estimates for the 

incidence and mortality rate of severe sepsis vary depending on how they are measured. They did 

find that the retrospective use of ICD-9 codes was highly sensitive for the diagnosis of severe 

sepsis, which would suggest its use as a sepsis diagnosis proxy be continued. Per the literature, a 

preponderance of research on sepsis alerting has been conducted in academic medical centers. 

Studies at medical centers thus far, including this one, have produced equivocal results regarding 

the patient outcomes of sepsis-related mortality and length of stay, and the process outcomes of 

recorded sepsis diagnoses and bundle order set usage. It would therefore be recommended the 

effectiveness of SIRS and sepsis alerts be measured in other settings, such as healthcare facilities 

in the private and not-for-profit domains, due to variations in patient demography such as income 

and illness acuity in cities, suburbs, and rural areas. Such studies might help in obtaining a more 

accurate overall view of how effective these alerts are in various populations.  
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In addition, Rhodes et al. (2015) determined that overall compliance rates with the SSC-

recommended order set bundles (akin to PowerPlans) were low, at 19% for the 3-hour bundle 

and 36% for the 6-hour bundle. VCU Health System also suffered from low order set bundle 

(Sepsis PowerPlan) use. Thus, in order to fully understand whether the needed evidence-based 

protocols for sepsis treatment were followed, tracking physician-customized order sets, 

individual groupings of sepsis-related orders, or their equivalents, by chart reviews or other 

means may prove a better way to measure their overall uptake and consequently, develop 

strategies for improving clinician responsiveness. 

As the human and financial costs of sepsis-related mortality remain unacceptably high, 

SIRS and sepsis alerts are worth a continued investment for any healthcare facility with a 

compatible EMR. Although investing in and deploying sophisticated, real-time algorithmic SIRS 

and sepsis alerts does not necessarily result in improved patient and process outcomes, they 

should continue be used in order to accurately ascertain their effectiveness in those terms. 

Increased use of the sepsis algorithm will also provide more data for additional studies that can 

address its impact on sepsis-related mortality. While speculation on the existing literature can 

inform current clinical practice, better-designed studies measuring outcome variables more 

accurately can be constructed to determine where and why alerts are or are not working. 

Conclusion 

 VCU Health System provided a singular setting in which real-time, state-of-the art, 

uniquely customized cloud-based SIRS and sepsis alerts were employed on a large, general, 

adult inpatient population. The study examined the impact of SIRS and sepsis CDS alerts upon 

the patient outcomes of sepsis-related mortality and length of stay, and the process outcomes of 

recorded sepsis diagnoses and ordered Sepsis PowerPlans. Although results were mixed, they 
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provide a basis for comparison for additional studies involving similar types of CDS sepsis 

detection algorithms, and even though alerting criteria can vary slightly per institution, it should 

not be enough to significantly alter overall outcomes. Each research study design can build upon 

the lessons learned from previous studies, engendering more effective research in terms of 

independent, dependent, and control variable choice and measurement. 
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Appendix A 

SIRS Screening Alert 
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Appendix B 

Sepsis Screening Alert 
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Appendix C 

Sepsis Initial Resuscitation PowerPlan (Order Set Bundle) 
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Appendix C - Continued 

Sepsis Initial Resuscitation PowerPlan (Order Set Bundle) 
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Appendix C - Continued 

Sepsis Initial Resuscitation PowerPlan (Order Set Bundle) 
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Appendix D 

ICD-9 and ICD-10 Codes Used to Identify Sepsis 
 

Type ICD-9 ICD-10 
Diagnosis 038.0 A40.0, A40.1, A40.3, A40.8, A40.9 
Diagnosis 038.1 A41.2 
Diagnosis 038.11 A41.01 
Diagnosis 038.12 A41.02 
Diagnosis 038.19 A41.1 
Diagnosis 038.2 A40.3 
Diagnosis 038.3 A41.4 
Diagnosis 038.40 A41.50 
Diagnosis 038.41 A41.3 
Diagnosis 038.42 A41.51 
Diagnosis 038.43 A41.52 
Diagnosis 038.44 A41.53 
Diagnosis 038.49 A41.59 
Diagnosis 038.8 A41.81, A41.89, A42.7 
Diagnosis 038.9 A41.9 
Diagnosis 785.52 R65.21 
Diagnosis 995.91 A02.1, A22.7, A26.7, A32.7, A40.0, A40.1, A40.3, 

A40.8, A40.9, A41.01, A41.02, A41.1, A41.2, 
A41.3, A41.4, A41.50, A41.51, A41.53, A41.53, 
A41.59, A41.81, A41.89, A41.9, A42.7, A54.86, 
B37.7 

Diagnosis 995.92 R65.20, R65.21 
Diagnosis 998.02 T81.12XA 
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